
Grammar Engineering — ESSLLI 2016 (Exercise 2)

High-Level Goals

• Deploy co-references in agreement and phrase structure recursion.

• Implement an analysis of pre- and post-head modification.

1 Obtaining the Starting Grammar

• Bring up our development environment by opening a terminal (‘Control-Alt-T’) and running the ‘lkb command
from the shell command line.

• If you completed the previous exercise and are comfortable with your solution, you can continue from the contents
of your ‘grammar1’ directory. If you choose to do so, then type this at the shell prompt (the terminal window)
to get a few additions we will need for today:

svn update grammar1

If, however, you would rather get a fresh start for this exercise, you can obtain a new starting grammar equivalent
to the model solution for the previous exercise, by typing at the shell prompt:

svn co $grammar2

Note that, in case you get a fresh grammar, it will be in a new directory called ‘grammar2’.

2 Use of Feature Structure Re-Entrancies in Agreement

• Since the feature AGR is introduced on the type pos, all kinds of words will have an agreement feature. However,
in English only determiners and nouns (and probably verbs, depending on which perspective one takes) have
agreement information of their own. Unused features unnecessarily increase the size of the grammar and can
make errors more difficult to track down. Modify your grammar so that the feature AGR only appears on AGR-
bearing pos subtypes and not on others like prep. To do this, you will need to add a new type, say agr-pos,
below pos and then make det , noun, and verb subtypes of the new agr-pos.

• The intuition behind determiner – noun agreement is that the AGR value of the noun must be the same as that of
its specifier. In our lexicon, though, the AGR value of the noun and the AGR value of its specifier are stipulated
separately. Use re-entrancies to eliminate this redundancy and capture the generalization underlying agreement,
viz. that the AGR value of the noun itself is identical to that of its specifier. As always, verify your changes by
parsing your test sentences, specifically the ones testing agreement.

In case the syntax of re-entrancies in TDL is still confusing, here’s an example:

x := y &

[F #1 & z,

G #1].

This definition means that the value of the feature F is z , and the value of the feature G is the same as that of
the feature F.

3 An Analysis of ‘Free’ Modifiers

• So far, we have grammar rules to combine heads with two general types of sister constituents, viz. complements to
the right of the head and specifiers to its left. We will extend the grammar to provide an analysis of modification,
admitting sentences like the dog barks near the cat.

We introduce a new head feature MOD and a new syntactic rule for modifiers, and we make use of the notion of
underspecification.

• In the file ‘types.tdl’, add the feature MOD to the definition of the type pos, with its value constrained to be of
type *list* , the same type as for the SPR attribute.

• Also in the types file, assign an appropriate value for MOD to each of the subtypes of pos. In our analysis of ‘free’
modification, modifiers use a feature structure of type expression inside of their MOD list to constrain the type
of phrase they can attach to. In other words, modifiers are not selected for by head daugthers, but instead the
modifier daughter is the one to select which heads it can modify. Non-modifiers, i.e. everything but prepositions
at this point, will have an empty MOD list. Prepositions, on the other hand, should have exactly one element in
their MOD list, effectively constraining which phrases they will be able to modify.

• Add near as an additional preposition in the lexicon, copying the entry of to and adapting it as needed.

• In the file ‘rules.tdl, add a new head – modifier rule somewhat similar to the existing specifier – head rule, but
with the modifier daughter constraining the head daughter, e.g.

phrase

[
HEAD 2

]

1
phrase

[
HEAD 2

]
phrase

[
HEAD

[
MOD

〈
1
〉]]

• In addition to the above constraints, determine the SPR and COMPS values on the mother. Save your changes,
then test your revised grammar using the test file ‘mod.items’. Examine the results, and make any necessary
corrections.

• If your analysis does not already admit examples like the dog near the cat barks, modify your grammar appro-
priately to also allow prepositions to modify nominal phrases. In order for modifiers to select for phrases headed
either by a verb or a noun, consider the introduction of an additional type modable into the pos hierarchy, such
that verb and noun will both be compatible with the new modable.

• If your analysis provides two parses for the sentence the dog barks near the cat, modify your grammar to eliminate
one of the two parses, then run the batch parse again with the file ‘mod.items’, and examine the results.

• Add additional sentences to the file ‘mod.items’, and notice what happens to the number of analyses as you add
several prepositional phrase modifiers within a single sentence.

4 Government of Specific Prepositional Phrase Complements

• We still fail to enforce the requirement on the PP complement of (the second lexical entry for) gave that the
PP be headed by the specific preposition to. Add an additional attribute FORM to the type prep and constrain
it to take a value of type *string* . Next, in ‘lexicon.tdl’, make sure that the value of FORM (inside of prep)
appropriately reflects the surface form of the preposition, e.g. “to” for the lexical entry to.

• Adding FORM to prep has the side-effect of making it a HEAD feature, i.e. one of the properties that will be
automatically passed up from a head daughter to its mother, e.g. from a preposition to the PP built from
combining a prepositional head with its NP complement. Parse the sentence the cat gave the dog to the animal
(using your own animal, of course; or ours, aardvark, if you started with a fresh grammar today). Inspect the
feature structure of the PP node in the parse tree and confirm that its FORM value is indeed “to”.

• At this point, all PPs in our trees will be marked for FORM, such that lexical heads selecting for PP complements
can now require a specific value. Add the necessary constraint to gave in the lexicon.

5 The Head Feature Principle

• Looking at the various rules, you will have noticed that in each rule the HEAD value of the whole phrase is always
the same as the HEAD value of one of the daughters in ARGS. The argument which contributes the HEAD value to
the whole phrase is known as the head daughter of the phrase. For some kinds of phrases, the head daughter is
the first daughter, and for some it’s the last daughter. We will rearrange the hierarchy of rules to capture this
distinction between head-initial phrases and head-final phrases.

• In ‘types.tdl’, add four new types:

head-initial := phrase &

[HEAD #head,

ARGS [FIRST [HEAD #head]]].

head-final := phrase &

[HEAD #head,

ARGS < expression, [HEAD #head] >].

root-head-initial := root & head-initial.

root-head-final := root & head-final.

Note that our definition of head-final makes the simplifying assumption that all head-final phrases are binary,
i.e. have exactly two daughters (which is true for our current grammars). Also, we will have more to say about
the type root-head-final later in the course.

• Modify the rules in ‘rules.tdl’ to inherit from these new types. For example, the head-complement-rule-0
should look like:

head-complement-rule-0 := head-initial &

[VAL [SPR #spr,

COMPS < >],

ARGS < word &

[VAL [SPR #spr,

COMPS < >]] >].

We call this rule head-initial, even though it has only one daughter, since the other head – complement rules
are also head-initial. Head-final rules, like the head-specifier-rule, should inherit from the type head-final . The
feature HEAD should not need mentioning in ‘rules.tdl’ at all, except for one occurrence in the head – modifier
rule perhaps.

6 More Modification

• Add an analysis for attributive adjectives like angry and fierce, as in the example those fierce dogs bark. Intro-
duce a new subtype of pos called adj. As with each extension of the grammar, design your analysis to admit
only grammatical sentences, avoiding both overgeneration (blocking, for example, *those dogs fierce bark) and
undergeneration (admitting, for example, those fierce angry dogs bark). You will likely need a type distinction
between pre- and post-modifiers, i.e. adjectives vs. prepositional phrases. Aim to incorporate this additional
distinction into the existing pos hierarchy, rather than adding a new feature.

• If possible, try to avoid spurious ambiguity (i.e. multiple ‘equivalent’ analyses for the same input) as, for example,
in Those fierce dogs near the cat bark. Test your analysis using the batch parse facility on the file ‘adj.items’,
and make adjustments as needed. Add some additional items to this file to illustrate the effects of your analysis.

• Finally, extend the grammar to admit adverbs like happily, which modify verbal projections (verb phrases and
sentences). Introduce a new subtype of pos called adv. Notice that many adverbs can appear both before
and after the phrase they modify: the dog barks happily but also the dog happily chased the cat. Test your
analysis using the file ‘adv.items’, and tune your changes as needed. Then re-run the batch parse using the files
‘mod.items’ and ‘adj.items’ to make sure that your previous analyses are still healthy.

7 Phrase Structure Recursion (Optional)

• As the LKB (and similar parsing systems) assume that each rule has a fixed number of daughters, we currently
have multiple instances of the head – complement schema: one binary-branching, picking up a single complement,
the other ternary, picking up two complements (plus, strictly speaking, the third instance, which is unary and
promotes intransitive lexical heads into phrases).

• To condense the binary and ternary instances of the head – complement schema into just one, investigate a binary-
branching VP analysis. For a ditransitive head (e.g. gave), there will need to be two consecutive applications of
the head – complement rule, each picking up one complement at a time and reducing the COMPS list appropriately.
Use the batch parsing machinery to make sure that there is no spurious ambiguity.

