
Grammar Engineering — ESSLLI 2016 (Exercise 4)

High-Level Goals

• Implement lexical rules for inflection and derivation

• Simplify the lexicon and increase expressivity using these lexical rules

1 Obtaining the Starting Grammar

• Bring up our development environment by opening a terminal (‘Control-Alt-T’) and running the ‘lkb command
from the shell command line.

We will start with a new version of the grammar for today’s exercise, so get a copy of the starting grammar by
typing at the shell prompt:

svn co $grammar4

• This grammar is a somewhat enriched version of the solution grammar for the previous exercise. The lexicon
no longer contains only fully inflected words, but rather uninflected lexemes which inherit from lexical types
that express what is common to each of the instances of the type. For example, the type noun-lxm-intransitive
unsurprisingly includes the constraint [HEAD noun] which was previously declared separately on each noun entry
in the lexicon. This type also constrains the SPR and COMPS values as expected, and includes the reentrancy for
agreement that you added separately to each noun entry in the previous exercise.

• We have added to the grammar a file called irules.tdl that defines inflectional lexical rules to build expressions
of type ‘word’ out of these lexemes. This grammar also has an additional subtype of expression called syn-struc
which enables us to distinguish the types word and phrase (which can appear as daughters of phrases) from
lexeme which cannot, forcing them to undergo an inflectional rule in order to be available to construct phrases.

• The grammar also makes use of a few additional descriptive devices, all defined as types and feature structures.
We have added a type *bool* (“boolean”) whose two subtypes are simply ‘+’ and ‘–’, so that we can employ
features like opt (for ‘optional’) which are given a positive or negative value. You will also see two examples of
a somewhat fancy concept called a parameterized list, which allows us to require that every member of such a
list is compatible with some particular constraint; for example, it is convenient to have a notion of a (possibly
empty) list all of whose members are consistent with the constraint [OPT +] meaning that they are optional.

• Notice that the ARGS attribute has moved up from phrase to expression so that we can also implement lexical rules
as typed feature structures, for both lexeme-to-lexeme and lexeme-to-word rules. We will also want a second
partitioning of our three subtypes of expressions, one which groups word and lexeme together, as subtypes which
inherit from a new type lex-item, another subtype of expression. The feature ORTH is now introduced on lex-item,
since we will not surprisingly care about orthography for both lexemes and words. The type word will then be
a supertype of all the lexeme-to-word rules. (This may seem a little surprising at first, having these new unary
rules be subtypes of word, but have patience.).

2 Inflectional rules

• As noted, we have given you a new file irules.tdl which defines the actual inflectional rules. Take a tour of
these rules, but don’t worry too much about the lines beginning with %suffix since these are instructions to the
orthographemic component, relating the application of each rule to a specific variation in spelling. Looking at
the file, convince yourself that all inflectional rules map arguments of type lexeme to signs of type word (which
can then act as arguments to syntactic rules). Study carefully the parse tree for the sentence The dog barks near
the cat, and observe how the different types of lexemes are mapped to words by the inflectional machinery.

• Now add one missing inflectional rule to this irules.tdl file, for verb words such as chase and bark which
require a specifier whose agr value is non-3sing. Note that this rule does not need to change the orthography of
the lexemes that it applies to. Test your improvement by doing a batch parse with the file all.items.



3 Derivational Lexical Rule: Dative

• Next, we will define a second type of lexical rule, namely a derivational rule that takes a lexeme as inputs and
produces another lexeme, to further eliminate redundancy in the file “lexicon.tdl”. In English, most ditransitive
verbs with two NP complements (e.g. give, send, sell) can undergo a lexical process known as dative shift,
resulting in a variant of the verb where the second NP argument has been promoted to the first argument
position, and the original first NP argument turns into a second PP argument, headed by the preposition to.
For example, dative shift captures the alternation in the two sentences Kim gave Sandy a book and Kim gave a
book to Sandy. To account for this alternation in argument structure, we will add a new lexical rule, deriving
one verbal lexeme from another.

Open the file lrules.tdl (for our derivational lexical rules) and add a new rule which has the following structure:

dative-shift-lrule := some-subtype-of-verb-lxm &

[ ORTH #orth,

HEAD ...,

ARGS < another-subtype-of-verb-lxm & [ ORTH #orth, ... ] > ].

• Choose suitable input and output types, and fill in any necessary constraints for each attribute, so that the rule
takes as its single argument (its input) a ditransitive verb with two NP complements, and produces as its output
a ditransitive verb with an NP complement and a PP complement. Remember that in our implementation of
lexical rules, the expression which the textbook labals as input is the single element of our args list, while the
type which the textbook labels as the output type is what appears immediately after the := definition symbol
in our rules.

• Remove the hand-built lexical entry for the NP – PP version of give from the file lexicon.tdl since we now
have a productive lexical rule which generates this entry for you. Your grammar should now account nicely for
the dative alternation. Test appropriately, and, as always, consider adding test items to all.items.

4 Another Derivational Rule: Agentive Nominalization

• While the dative rule has no morphological effect (no spelling change for the two variants), the next lexical rule
does, and defining it will make use of the LKB orthographemic component, i.e. the facility to associate a change
in orthography with a lexical rule. You should be able to work from the examples provided in ‘irules.tdl’ to
see how this spell-changing machinery is expressed in our lexical rules.

• Add a second derivational lexical rule to the file “lrules.tdl”, this one deriving agentive nouns from verbs, to
provide an analysis for sentences like The barkers chased those cats and The chasers barked., without adding any
additional noun or verb lexemes to lexicon.tdl. Adapt the orthography-changing machinery (taking inspiration
from the inflectional rules), to add the “-er” suffix to the input orthography of this new rule. The rule will need
to include this line for the “-er” suffix, which says that a word ending in ‘e’ just adds an ‘r’, while a word not
ending in ‘e’ adds an ‘er’:
%suffix (e er) (!e !eer)

Add relevant test items (both grammatical and ungrammatical) to the file ‘all.items’, and check your analysis
for both overgeneration and undergeneration.

5 Extend Agentive Nominalization: Optional Complements

• Extend your analysis of agentive nouns to allow for an optional complement PP marked with of, as in The
chasers of the cats barked. You may want to look at the lexeme type for the verb climb in lexicon.tdl to see
how we accommodate optional complements, and you will likely also find the type noun-lxm-transitive useful.
Note that your improved analysis might still employ only one lexical rule to derive agentive nouns, but you
might well find it convenient to define more than one such lexical rule. Be sure that your improved analysis
still accepts The chasers barked, but not *The chasers to the cats barked. Add more test examples to the file
‘all.items’ to test your analysis.


