Unification-Based
Grammar Engineering

Dan Flickinger
Stanford University & Redbird Advanced Learning
danf@stanford.edu

Stephan Oepen
Oslo University

oe@ifi.uio.no

ESSLLI 2016; August 1519, 2016

Dative Shift: A Productive Process

{hand,, give,, send, ...

{hand,, give,, send,, ...}

HEAD verb
SPR () _ _ _
) HEAD noun HEAD noun
COMPS (|SPR () |, SPR ()
COMPS COMPS
phrase! Y I phrase! Y
HEAD verb
SPR () |
' ' HEAD [PFDRM to]
HEAD noun prep
(gm0 e
COMPS
phrasel * phrasel 9

ESSLLI — 18-AUG-16

Grammar Engineering (2)

Lexical Variation: Lexical Rules

e Dative shift, passivization, et al. are systematic processes in the lexicon;
e use of monotonic inheritance is insufficient to relate give, and give;
e lexical rules are unary grammar rules that operate ‘within the lexicon’;

e take as input a lexical sign (expression) and output a derived lexical sign.

Rough Approximation of Passive Lexical Rule

HEAD
SPR (12])
CoMPS (3]
HEAD

SPR <p hraselHEAD noun]>

ARGS < >
FIRST lHEAD noun]
COMPS phrase

REST

ESSLLI — 18-AUG-16

Grammar Engineering (3)

Orthographemic Variation: Inflectional Rules

%h(letter-set (!s abcdefghijklmnopqrtuvwxyz))

noun-non-3sing_irule :=
hsuffix (!s !ss) (!ss !ssses) (ss sses)
non-3sing-word &
[HEAD [AGR non-3sing],
ARGS < noun-lxm >].

noun-3sing_irule :=
3sing-word &
[ORTH #1,
ARGS < noun-lxm & [ORTH #1] >].

dog
dogs
bus

busses

pass

passes

ESSLLI — 18-AUG-16

Grammar Engineering (4)

The Lexeme vs. Word Distinction

4 lex-item)
word lexeme
3sing-word non-3sing-word intransifive-Ixm
noun-Ixm intransitive-verb-Ixm
_ J

e Lexical entries are uninflected; cannot enter syntax by themselves;

e inflectional rules ‘make’ word from lexeme, possibly with ‘null’ suffix.

ESSLLI — 18-AUG-16

Grammar Engineering (5)

Recursion In the Type Hierarchy

e Type hierarchy must be finite after type inference; illegal type constraint:
x1ist* := xtop* & [FIRST *topx, REST *listx*].

e needs additional provision for empty lists; indirect recursion:

1ist := *topx*.
kne-list* := xlist* & [FIRST *topx, REST *listx*].
xnull*x = *xlist*.

e recursive types allow for parameterized list types (‘list of X'):

g—list := *1istx.
*s—ne—list*x := *ne-list*x & *s-list &

[FIRST expression, REST *s-listx*].
*s-null*x := *null* & *s—-listx*.

ESSLLI — 18-AUG-16

Grammar Engineering (6)

