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Dative Shift: A Productive Process
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Lexical Variation: Lexical Rules

e Dative shift, passivization, et al. are systematic processes in the lexicon;
e use of monotonic inheritance is insufficient to relate give, and give;
e lexical rules are unary grammar rules that operate ‘within the lexicon’;

e take as input a lexical sign (expression) and output a derived lexical sign.

Rough Approximation of Passive Lexical Rule
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Orthographemic Variation: Inflectional Rules

%h(letter-set (!s abcdefghijklmnopqrtuvwxyz))

noun-non-3sing_irule :=
hsuffix (!s !ss) (!ss !ssses) (ss sses)
non-3sing-word &
[ HEAD [ AGR non-3sing ],
ARGS < noun-lxm > ].

noun-3sing_irule :=
3sing-word &
[ ORTH #1,
ARGS < noun-lxm & [ ORTH #1 ] > ].

dog
dogs
bus

busses

pass

passes
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The Lexeme vs. Word Distinction

4 lex-item )
word lexeme
3sing-word non-3sing-word intransifive-Ixm
noun-Ixm intransitive-verb-Ixm
\_ J

e Lexical entries are uninflected; cannot enter syntax by themselves;

e inflectional rules ‘make’ word from lexeme, possibly with ‘null’ suffix.
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Recursion In the Type Hierarchy

e Type hierarchy must be finite after type inference; illegal type constraint:
x1ist* := xtop* & [ FIRST *topx, REST *listx* ].

e needs additional provision for empty lists; indirect recursion:

*1ist* := *topx*.
kne-list* := xlist* & [ FIRST *topx, REST *listx* ].
xnull*x = *xlist*.

e recursive types allow for parameterized list types (‘list of X'):

*g—list* := *1istx.
*s—ne—list*x := *ne-list*x & *s-list &

[ FIRST expression, REST *s-listx* ].
*s-null*x := *null* & *s—-listx*.
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