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NLP Today

3. The BiLSTM Hegemony

To a first approximation,
the de facto consensus in NLP in 2017 is
that no matter what the task,
you throw a BILSTM at it, with
attention if you need information flow

28

TTTTTTTTTTTTTT
|||||||||||||||||||||||||

Chris Manning
April 2017




NLP Today

3. The BiLSTM Hegemony

To a first approximation,
the de facto consensus in NLP in 2017 is
that no matter what the task,
you throw a BILSTM at it, with
attention if you need information flow

28

TTTTTTTTTTTTTT
IIIIIIIIIIIIIIIIIIIIIIIIII

Chris Manning
April 2017




= X2
N L P N L P I O d ay sy R -




(0.9)

c

A

-9

NLP Today

output

T

T

iInput text

TTTTTTTTTTTTTT
LLLLLLLLLLLLLLLLLLLLLL




(0.9)

c

A\

NLP Today

output

T

T

iInput text

TTTTTTTTTTTTTT
LLLLLLLLLLLLLLLLLLLLLL




(0.9)

c

3

-9

ALLEN INSTITUTE
O ay LLLLLLLLLLLLLLLLLLLL

output

T
T

iInput text




(0.9)

c

A

-9

NLP Today

output

Decode

Transform

iInput text

TTTTTTTTTTTTTT
LLLLLLLLLLLLLLLLLLLLLL



(0.9)

c

A

-9

NLP Today

output

Black Box

Black Box

Black Box

iInput text

TTTTTTTTTTTTTT
LLLLLLLLLLLLLLLLLLLLLL




(0.9)

c

A

-9

NLP Today

output

T

Black Box

T

iInput text

TTTTTTTTTTTTTT
LLLLLLLLLLLLLLLLLLLLLL




ALLEN INSTITUTE
X for ARTIFICIAL INTELLIGENCE

e How do these black boxes work?
e What can they learn / represent?

* What did they learn / represent?



BlackboxNLP 2019

Analyzing
and
interpreting

The second edition of the BlackboxNLP workshop will be collocated with ACL 2019 in Florence.

Archived information about the 2018 edition: blackboxnlp.github.io/2018.

neural Important dates

networks « Aprik19. Submission deadline (11:59pm Pacific Daylight Savings Time, UTC-7h).

for NLLP . May-17 May-20. Notification of acceptance.
o Jure-3. Camera ready (11:59pm Pacific Daylight Savings Time, UTC-7h).
Revealing the content « August 1. Workshop.




Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what did they *really* learn?
Q5: What is the representation power of diff archs?

Q6: Extracting a discrete reps from a trained model.
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Many research Qs

e How do these black boxes work? i

 What can they learn / represent?

* What did they learn / represent?

Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?



The learned functions are complex.

Our intuitions are often wrong.
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Intro to 1D CNN
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(usually also add non linearity)
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(can have larger filters)
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(can have larger filters)
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the actual service was  not very

we have the ngram vectors. now what?

good



Combine K vectors into a single vector
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max pooling
(max in each coordinate)



prediction
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train end-to-end for some task
(train the MLP, the filter matrix, and the embeddings together)
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ngram detectors
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Textbook wisdom:

Each filter captures a group of closely-related ngrams

o had no issues o IS super cool
f]. o had zero issues fz o was very interesting
o  had no problems o are well beyond

e 300 filters — 300 families of ngrams

e Each filter is homogeneous - captures one family.
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2 IBM Research, Haifa, Israel
3 Intuit, Hod HaSharon, Israel
4 Allen Institute for Artificial Intelligence
{alonjacovi, oren.sarshalom, yoav.goldberg}@gmail.com
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We can generate the ngrams that maximize each filter slot separately:

f
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The generated maximized ngrams score much higher than the top ngrams.

filter | top ngram score
f1 poorly designed junk 7.31
f2 utterly useless . 6.33
f3 still working perfect 6.42
f4 a minor drawback 6.11
f5 | deserves four stars 5.56

max from corpus ngrams

top word for each slot score
poorly displaying landfill 10.28
stopped refund disabled 7.96
saves delight invaluable 9.0
workstation high-quality drawback 9.27
excelente crossover incredible 7.78

max in each word
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The generated maximized ngrams score much higher than the top ngrams.

?(ikr —
filter | top ngram score ' top word for each slot

f1 poorly designed junk 731 | poorly displaying landfill
f2 utterly useless . | 6.33 | stopped refund disabled
f3 still working perfect 6.42 | saves delight invaluable

f4 a minor drawback | 6.11 workstation high-quality drawback

f5 deserves four stars 5.56 excelente crossover incredible

max from corpus ngrams max in each word
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The generated maximized ngrams score much higher than the top ngrams.

!/1077 —
filter | top ngram score ' top word for each slot

f1 poorly designed junk 731 | poorly displaying landfill
f2 utterly useless . . 6.33 | stopped refund disabled
f3 still working perfect 6.42 | saves delight invaluable

f4 a minor drawback 6.11

workstation high-quality drawback

f5 deserves four stars 5.56

excelente crossover incredible

max from corpus ngrams max in each word
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top ngrams
rank | ngram score slot scores
1 still working perfect 6.42 | 1.58 1.22 3.62
2 | works - perfect 578 | 1.91 0.25 3.62
3 | i1solation proves invaluable 0.39 1.03 4.19

3| isolation proves invaluable | 5.61 | 0.39 1.03 4.19.
4 | still near perfect 56 | 1.58 04 3.62

still working great 545 | 1.58 1.22 2.65

5
6 | works as good 544 | 191 145 208
7 | still holding strong 537 | 1.58 1.81 198

only some of the words maximize their slot scores



New concept: Slot Activation Pattern Low Me!um High

List of top-scoring ngrams
for a specific filter
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ngram slot #1  slot #2  slot #3
was super intriguing 1.01 3.16 5.84
g0 wrong pairing 3.97 4.12 1.65
am so grateful 2.59 3.27 4.07
overall very worth 3.84 1.86 4.22
go wrong bringing 3.97 4.12 1.81
also well worth 1.83 3.06 4.22
- super compassionate  0.51 3.17 5.01
go wrong when 3.97 4.12 -0.4
a well oiled 0.75 3.06 4.84



New concept: Slot Activation Pattern

ngram

.al | was super intriguing

Low Medium High
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g0 wrong pairing

am so grateful

overall very worth

go wrong bringing
also well worth

- super compassionate
go wrong when

a well oiled

List of top-scoring ngrams
for a specific filter

2.59 3.27
3.84 1.86
3.97 4.12
1.83 3.06
0.51 3.17
3.97 4.12
0.75 3.06



New concept: Slot Activation Pattern
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Cluster filter ngrams according to slot activations

Each cluster is a homogeneous

family of ngrams.

The same filter detected both

families.

/

cluster 1

cluster2 —
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ngram slot #1 slot#2 slot #3
centroid .l 0.75 1.97 2.79
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a well oiled 0.75 3.06 4.84
centroid 2.87 2.17 0.12
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g0 wrong pairing 3.97 4.12 1.65
go wrong when 3.97 4.12 -0.4



Cluster filter ngrams according to slot activations
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_ ngram slot #1 slot#2 slot #3
Eac.h cluster is a homogeneous controid a8 0.75 197 279
family of ngrams. .l was super intriguing 101 3.16 __ 5.84
«if am so grateful 2.59 3.27 4.07
The same filter detected both il overall very worth 3.84 1.86 422
families. «1l also well worth 1.83 3.06 4.22
cluster 1 "l - super compassionate  0.51 3.17 5.01
i a well oiled 0.75 3.06 4.84
centroid 2.87 2.17 0.12
go wrong bringing 3.97 4.12 1.81
cluster2 —— g0 wrong pairing 3.97 4.12 1.65
go wrong when 3.97 4.12 -0.4

filters are not homogenous

a filter may detect multiple families of ngrams



complex behavior.

300 filters --> more than 300 ngram types.

filters are not homogenous
a filter may detect multiple families of ngrams
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Textbook wisdom 2:

filters detect the presence
of specific ngrams / words

| Neural Network Methods
for Natural Language Processing

SYNTHESIS LE
Human Lane 'ECHNOLOGIES

Graem
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High-scoring
2.99 1.86 5.05 «—  hgram

'm |really | pleased

does slot #2 capture the word "really"?
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weak score

2.99 ~1.86 5.05
'm pleased

1.86 Is an average score for slot #2.
many words get similar scores
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2.59 ~1.86 5.05
'm pleased

1.86 Is an average score for slot #2.

many words get similar scores

slot #2 Is a wildcard slot?
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weak score

2.59 ~1.86 5.05
'm pleased

1.86 Is an average score for slot #2.
many words get similar scores

slot #2 Is a wildcard slot?

nope.
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slot #2 Is a wildcard slot?

nope.
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1D ConvNets are Complex

Intuition

Each filter detects
a family of ngrams

Filters detect presence
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1D ConvNets are Complex

Intuition Real World
Each filter detects Some filters detect
a family of ngrams multiple tamilies of ngrams

Filters detect presence Some filters detect absence
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Q1: how did a given model reach a decision?
how Is the architecture capturing the phenomena?

also look at:

Sharp Nearby, Fuzzy Far Away: How Neural
Language Models Use Context

Urvashi Khandelwal, He He, Peng Qi, Dan Jurafsky
Computer Science Department

Stanford University
{urvashik, hehe, pengqi, jurafsky}@stanford.edu



Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what can't they do?

Q5: What is the representation power of diff archs?

Q6: Extracting a discrete reps from a trained model.



Q2: What is encoded/captured in a vector?
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Q2: What is encoded/captured in a vector?

Published as a conference paper at ICLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Yossi Adi'+?, Einat Kermany?, Yonatan Belinkov?, Ofer Lavi?, Yoav Goldberg!
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Q2: What is encoded/captured in a vector?

Published as a conference paper at ICLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Methodology: ¢an You train a classifier to predict
X from the representation”
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What's in a sentence”

To tully reconstruct a sentence, we need to know:
* How many words?
 Which words?

e \What order?

Compare different sentence representations based
on their preservation of these properties.
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3 Formulate as
Prediction Tasks
Sentence Length Word order

Which words?
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Sentence encoding.
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Predict length (8 bins)
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Sentence encoding s.
Word encoding a.
Task:

Does s contain a?
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Formulate as
Prediction lasks
Sentence Length Word order
Input: Input:
Sentence encoding. Sentence encoding s.
Task: Word encoding a.

Predict length (8 bins)

Which words?

Input:

Sentence encoding s.
Word encoding a.
Task:

Does s contain a?

Word encoding b.
Task:

Does a appear in s
before b?
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NLP
Some Results
Sentence Length Encoder (LSTM)
Input. . dim acc
Sentence encoding.
Task: 100
Predict length (binned) 300
500
750

Baseline 22% 1000
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S Result

Sentence Length Encoder (LSTM)
Input. . dim acc
Sentence encoding. ]
Task 100 950%
Predict length (binned) 300 80%
500 82%
750 79%

Baseline 22% 1000 83%
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NLP S R ‘t
Sentence Length Encoder (LSTM) CBOW
Input | dm  acc
Sentence encoding. ] 5
Task: 100 950% a
Predict length (binned) 300 80%
500 82%
750 79%
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CBOW (Continuous-Bag-of-Words)

* Represent each word in the sentence as a vector (word2vec)

* The average of these vectors is the sentence vector

) /6

OOO0O0O
.
S
S
OOCSOO
$

OOO0O0O

The fox jumped over the fence sentence vector
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NLP S R ‘t
Sentence Length Encoder (LSTM) CBOW
Input | dm  acc
Sentence encoding. ] 5
Task: 100 950% a
Predict length (binned) 300 80%
500 82%
750 79%



==
" Some Results
Sentence Length Encoder (LSTM) CBOW
Input . dim acc
Sentence encoding. ] ]
Task: 100 500/0 450/0
Predict length (binned) 300 80% 49%
500 82% 57%
750  79% 60%

Baseline 22% 1000 83% 60%
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" Some Results
Sentence Length Encoder (LSTM) CBOW
Input . dim acc
Sentence encoding. ] ]
Task: 100 500/0 450/0
Predict length (binned) 300 80% 49%
500 82% 57%
Bacel 500 750  79% 60%
aseline 227 1000 83% 60%

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation
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" Some Results
Sentence Length Encoder (LSTM) CBOW
Input . dim acc
Sentence encoding. ] ]
Task: 100 50 O/o 45 O/o
Predict length (binned) 300 80% 49%
500 82% 57%
79% 60%
83% 60%

surprisingly high accuracy for 8-class classification,
considering that CBOW is an averaged representation
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reviewer 2:

The paper reads very well, but

a) I do not understand the motivation, and
b) the experiments seem flawed.

The average over CBOW word embeddings should
never encode for sentence length. The fact
that you learn reasonably well with

these representations, suggest overfitting.
This may well be, since Wikipedia

contains tons of duplicate or near-duplicate
sentences.

considering that CBOW Is an averaged representation
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How does CBOW
encode length?

* Maybe some words are predictive of longer

sentences?
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Representation dimensions
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encode length?

* Maybe some words are predictive of longer
sentences?

(o))
Ul

[*))]
o
T

English sentences

9]
ol
T

1Synthetic sentences
with random words

Length prediction accuracy
H (0]
u o

100 300 500 750 1000
Representation dimensions




Norm

0.55|

0.50

0.40}

0.35}

How does CBOW
encode length?

5 10 15 20 25 30
Sentence length
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Norm

0.35}

How does CBOW
encode length?

5

10

15 20 25 30 35
Sentence length
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(Why?)
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Some Results

Which words? Encoder (LSTM) CBOW
Input: di
. im acc
Sentence encoding s. {00

Word encoding a.
Task: 300

Does s contain w? 000
/50

1000
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Some Results

Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ]
Word encoding a. 100 /0%
Does s contain w? 500 76%
750 80%

1000  75%
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Some Results

Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ]
Word encoding a. 100 /0%
Does s contain w? 500 76%
750 80%
1000  75%

higher dim not necessarily better!
(reconstruction BLEU does improve in higher dims)
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Some Results

Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ]
Word encoding a. 100 /0%
Does s contain w? 500 76%
750 80%
1000  75%

power moves to the decoder (which we throw away)
reconstruction BLEU does improve in higher dims
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Some Results

Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ] .
Word encoding a. 100 /0% 84%
Does s contain w? 500 76% 60%
750 80% 60%

1000  75% 60%
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Some Results

Which words? Encoder (LSTM) CBOW
Input: 5
. im acc
Sentence encoding s. ] .
Word encoding a. 100 /0% 84%
Does s contain w? 500 76% 60%
750 80% 60%
1000  75% 60%

cbow better at preserving sentence words
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Some Results

Word order Encoder (LSTM) CBOW

nput dim acc

Sentence encoding s.

Word encoding a. 100 79%

Word encoding b. 300  83%

Task: 500 85%

Does a appear in s 750  86%

before b? 1000  90%
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Some Results

Word order Encoder (LSTM) CBOW

nput: dim acc

Sentence encoding s.

Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%
before b? 1000 90% 66%
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Some Results

Word order Encoder (LSTM) CBOW
Input: dim |
Sentence encoding s. ' ace wait what"
Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%
before b? 1000 90% 66%
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Some Results

Word order Encoder (LSTM) CBOW
Input: dim |
Sentence encoding s. ' ace wait what"
Word encoding a. 100 79% 70%
Word encoding b. 300  83% 70%
Task: 500 85% 66%
Does a appear in s 750 86% 66%
before b? 1000 90% 66%

what if we trained on words alone,
without sentence representation?



Word order

Input:

Sentence encoding s.
Word encoding a.
Word encoding b.
Task:

Does a appearins
before b*?

Some Results

Encoder (LSTM)

dim
100
300
500

790
1000

dCC

79%
83%
89%
806%
90%

67 %
67 %
67 %
67 %
095%

TTTTTTTTTTTTTT
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CBOW

wait what?
/0% 6/7%
/0% 68%
66% 65%
66% 64%
66% 64%

what it we trained on words alone,
without sentence representation?



Word order

Input:

Sentence encoding s.
Word encoding a.
Word encoding b.
Task:

Does a appearins
before b*?

Some Results

Encoder (LSTM)

dim
100
300
500

790
1000

dCC

79%
83%
89%
806%
90%

6/ %
6/ %
6/ %
67 %
0695%

TTTTTTTTTTTTTT
llllllllllllllllllllllllll

CBOW

wait what?
/0% 6/7%
/0% 68%
66% 65%
66% 64%
66% 64%




NLP Does It Learn to Represent English
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or Just Sequences?

e \We use the trained encoders

* But evaluate them on permuted sentences

encode(“fence over jumped the fox The”)

Does fence appear betfore fox?



NLP Does It Learn to Represent English
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or Just Sequences?

100

- -
-
-
-

(o]
o
T

-4 LSTM

80

. —— cbow

Length prediction accuracy

60
Bl CBOW
= - Perm CBOW
50 @—O® Encoder-decoder| |
= - Perm ED
40 | | | | |
100 300 500 750 1000

Representation dimensions

Length Prediction



NLP Does It Learn to Represent English
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or Just Sequences?

—

LSTM

Content prediction accur

cbow

Content Prediction



NL P Does It Learn to Represent English
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or Just Sequences?

ago//. .4‘ LSTM
3 T { cbow
O 50— - - BB s Cbow permuted

Representation dimensions

Order Prediction
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“irDoes it Learn to Represent Englisn

or Just Sequences?

-~

| auto-encoder LSTM ;
' does not really care what it encodes. |
| ageneric sequence encoder. |



NLP Does It Learn to Represent English
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or Just Sequences?

-~

| auto-encoder LSTM ¢-
| does not really care what it encodes. |
| ageneric sequence encoder. |

nat-lang information is in the decoder.



Skip-Thought Vectors
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<eos>

| got back home

O0—>0——>0—>0——>0—>0—>0—>0—» seos= got " back
..... This was

I could see the cat on the steps Strange  <eos>

<eos> This was strange

home
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Does it Learn to Represent English

or Just Sequences?
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NLP Does It Learn to Represent English
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or Just Sequences?

Order prediction accura
(@)} ~ (0]

Length prediction accura

Content

Skip-thought encoders |
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"What did we learn?

e |STM-encoder vectors encode length.

e |f you care about word identity, preter CBOW.

e |f you care about word order, use LSTM.

e (Can recover guite a bit of order also from CBOW.

« LSTM Encoder doesn't rely on language-naturalness

o Skip-thoughts encoder does rely on it.



Q2: What is encoded/captured in a vector?

Published as a conference paper at ICLR 2017

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Methodology: ¢an You train a classifier to predict
X from the representation”
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EMBEDDINGS USING AUXILIARY PREDICTION TASKS
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X from the representation”

TTTTTTTTTTTTTT
llllllllllllllllllllllllll



Q2: What is encoded/captured in a vector?

work performed early 2016

Published as a conference paper af ICLR 201

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Methodology: ¢an You train a classifier to predict
X from the representation”
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Q2: What is encoded/captured in a vector?

work performed early 2016

Published as a conference paper ICLR 201
Rejected from pretty much all* NLP venues

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

Methodology: ¢an You train a classifier to predict
X from the representation”

*that matter
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Q2: What is encoded/captured in a vector?

work performed early 2016

Published as a conference paper at ICLR 2017
Rejected from pretty much all* NLP venues

reviewer 2:

The paper reads very well, but
a) I do not understand the motivation, and
b) the experiments seem flawed.

*that matter
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Q2: What is encoded/captured in a vector?

Visualisation and ‘diagnostic classifiers’ reveal how recurrent
and recursive neural networks process hierarchical structure

JAIR
Dieuwke Hupkes D.HUPKES@QUVA.NL
Sara Veldhoen S.F.VELDHOEN@UVA.NL
Willem Zuidema ZUIDEMA@UVA.NL

ILLC, Unwversity of Amsterdam
P.O.Bozx 94242,
1000 C'F Amsterdam. Netherlan.dse
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Q2: What is encoded/captured in a vector?

Visualisation and ‘diagnostic classifiers’ reveal how recurrent
and recursive neural networks process hierarchical structure

JAIR, NIPS workshop 2016

Dieuwke Hupkes D.HUPKES@QUVA.NL
Sara Veldhoen I S.F.VELDHOEN@UVA.NL
Willem Zuidema ZUIDEMAQUVA.NL
ILLC, University of Amsterdam ~With us

P.O.Box 94242,

1000 C'F Amsterdam. Netherlan.dse
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Q2: What is encoded/captured in a vector?

much better name!

Visualisation and (tdiagnostic classifiers’] reveal how recurrent
and recursive neural networks process hierarchical structure
JAIR, NIPS workshop 2016

Dieuwke Hupkes I D.HUPKESQUVA.NL

Sara Veldhoen S.F.VELDHOEN@QUVA.NL
Willem Zuidema ZUIDEMA@UVA.NL
ILLC, University of Amsterdam ~With us

P.O.Box 94242,

1000 C'F Amsterdam. Netherlan.dse
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Q2: What is encoded/captured in a vector?

Probing for semantic evidence of composition by means of simple
RepEval workshop classification tasks

2016

Allyson Ettinger', Ahmed Elgohary?, Philip Resnik'*
ILinguistics, ?Computer Science, *Institute for Advanced Computer Studies
University of Maryland, College Park, MD
{aetting, resnik}@umd.edu, elgohary@cs.umd.edu

Visualisation and {‘kdiagnostic classiﬁers’g reveal how recurrent
and recursive neural networks process hierarchical structure
JAIR, NIPS workshop 2016

Dieuwke Hupkes I D.HUPKES@QUVA.NL

Sara Veldhoen S.F.VELDHOENQUVA.NL
Willem Zuidema ZUIDEMAQUVA.NL
ILLC, Unwversity of Amsterdam ~With us

P.O.Box 94242,

1000 C'F Amsterdam. Netherlan.dse



Q2: What is encoded/captured in a vector?

NIPS 2017

Analyzing Hidden Representations in End-to-End
Automatic Speech Recognition Systems

Yonatan Belinkov and James Glass
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139
{belinkov, glass}@mit.edu

TTTTTTTTTTTTTT
llllllllllllllllllllllllll



Q2: What is encoded/captured in a vector?

NIPS 2017

Analyzing Hidden Representations in End-to-End
Automatic Speech Recognition Systems

IJCNLP 2017 Understanding and Improving Morphological Learning
in the Neural Machine Translation Decoder

Fahim Dalvi Nadir Durrani Hassan Sajjad
Yonatan Belinkov* Stephan Vogel

Qatar Computing Research Institute — HBKU, Doha, Qatar
{faimaduddin, ndurrani, hsajjad, svogel}@gf.org.qga

*MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
belinkov@mit.edu
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Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

Alexis Conneau German Kruszewski Guillaume Lample
Facebook AI Research Facebook AI Research Facebook AI Research
Université Le Mans germank@fb.com Sorbonne Universités
aconneaul@fb.com glample@fb.com
Loic Barrault Marco Baroni

Université Le Mans Facebook Al Research

loic.barrault@univ—-lemans. fr mbaroni@fb.com
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Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

Xunjie Zhu Tingfeng Li Gerard de Melo
Rutgers University Northwestern Polytechnical Rutgers University
Piscataway, NJ, USA University, Xi’an, China Piscataway, NJ, USA

xunjie.zhu ltf@mail ..nwpu.edu.cn gdm@demelo.org

rutgers.edu
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Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

many more works in xACL / BlackBox NLP
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Q2: What is encoded/captured in a vector?
2 years later...

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

many more works in xACL / BlackBox NLP
(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?
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Q2: What is encoded/captured in a vector?

ACL 2018  What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic properties

ACL 2018 Exploring Semantic Properties of Sentence Embeddings

many more works in xACL / BlackBox NLP
(ML) workshops --> ML --> non-ACL NLP --> ACL (NAACL, EMNLP...)

is top-tier NLP too conservative?

You will become reviewers soon. Think about it.



Do | still believe
N probing tasks”?
* Sort of.
* "BERT network can do SRL with 78%'
» Useless.
« "BERT network does 78% SRL in layer 3, and 63% in layer 8"
* Much better.

* They are interesting for comparing different networks, if we
manage to see a difference.

 But, hard to interpret the results.
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e Do | still believe o
N probing tasks”?

* |f our classifier managed to extract property X, does
this mean the network actually uses property X?

» |f our classitier did not manage to recover property
X, does this mean the network does not use this
property?

* consider: the last layer in a multi-layer network for
sentiment, is not predictive of the presence of
negation words. Does this mean the network
cannot do negation”
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Do | still believe
N probing tasks”?

* Important technique, but take with a grain of sall.
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Understanding LSTMs

Q3: what kinds of linguistic structures
can be captured by an RNN?
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NLPUnderstanding |STMs

Q3: what kinds of linguistic structures
can be captured by an RNN?

Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies

Tal Linzen'* Emmanuel Dupoux’ Yoav Goldberg
LSCP! & IIN?, CNRS, Computer Science Department
EHESS and ENS, PSL Research University Bar Ilan University
{tal.linzen, yoav.goldberglRgmail.com

emmanuel .dupoux}@ens. fr
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy kicks the ba
the boys kick the ba
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy with the white shirt with the blue collar kicks the ball

the boys with the white shirts with the blue collars kick the ball
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy (wit
e boys (wit

Nt

Nt

ne w

ne w

Nite s

Nite s

nirt (with the blue collar)) kicks the ball

nirts (with the blue collars)) kick the ball
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The case for Syntax

 Some natural-language phenomena are indicative
of hierarchical structure.

* For example, subject verb agreement.

the boy (wit
e boys (wit

Nt

Nt

ne w

ne w

Nite s

Nite s

nirt (with the blue collar)) kicks the ball

nirts (with the blue collars)) kick the ball

~_
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral rationalism are plato and immanuel kant .
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

replace rare words with their POS
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN

cut the sentence at the verb
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN

A

plural or singular?

binary prediction task
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Can a sequence LoSTM
learn agreement?

some prominent figures in the history of philosophy who have
defended moral NN

A

or singular?
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Can a sequence LoSTM
learn agreement?

some prominent in the history of philosophy who have
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A

or singular?
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Can a sequence LoSTM
learn agreement?

some prominent in the history of philosophy who have
defended moral NN

A

or singular?
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Can a sequence LoSTM
learn agreement?

some prominent in the history of philosophy who have
defended moral NN

A

or singular?

in order to answer:
Need to learn the concept of number.

Need to identity the subject (ignoring irrelevant words)
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t* Binary Prediction lask

plural / singular

T

T
00000
T
. RNN - RNN - RNN - RNN - RNN
cell cell cell cell cell
t t t t t
00000 00000 00000 00000 00000

have defended moral NN
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Somewhat Harder Task
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Somewhat Harder Task

some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

choose a verb with a subject
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Somewhat Harder Task

Z
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some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant .

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant .

choose a verb with a subject
and flip its number.
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" Somewhat Harder Task
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some prominent figures in the history of philosophy who have
defended moral NN are plato and immanuel kant . V

some prominent figures in the history of philosophy who have
defended moral NN is plato and immanuel kant . X

can the LSTM learn to
distinguish good from bad sentences?
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the boy KIcks the pall
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Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).
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Can a sequence LoSTM
learn agreement?

predicts number with 99% accuracy.

...but most examples are very easy

50 1 (look at last noun).
40% -

30% —
20% —

Error rate

10% —

o%_._.-.-o-o—o-O-o-O—.-.""‘"

| | | | | | |
2 4 6 8 10 12 14

Distance (no intervening nouns)
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Can a sequence LSTM
learn agreement??

predicts number wi

...but most examp

th 99% accuracy.
es are very easy

(look at last noun).

when restricted to cases
of at least one intervening noun:

97% accuracy
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Can a sequence LSTM

learn agreement??
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Can a sequence LSTM
learn agreement??

more errors as the number of intervening nouns
Of opposite number iINncreases
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Can a sequence LSTM

Error rate

learn agreement?

100%

80%

60%

40%

20%

0%

Baseline
(common
nouns)

Majority class

Number
prediction

0

| | |
1 2 3

Count of attractors

|
4
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Can a sequence LoSTM
learn agreement?

100% - |
Baseline
80% — (common
nouns)
= 60%
0] 0 =—
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

IN many and diverse cases.

but we did manage to find some common trends.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

noun compounds can be tricky

Conservation refugees live in a world col-
ored 1n shades of gray; limbo.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Relative clauses are hard.

The landmarks thatr this article lists here
are also run-of-the-mill and not notable.
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Can a sequence LSTM
learn agreement??

Where do LSTMs fail?

Reduced relative clauses are harder.

The landmarks this article lists here are
also run-of-the-mill and not notable.
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Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%

Reduced Relative clause 25%
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)

Can a sequence LSTM
learn agreement?

Where do LSTMs fail?

Error
No relative clause 3.2%
Overt relative clause 9.9%
Reduced Relative clause 25%

humans also fail much more on reduced relatives.



“©* The agreement experiment:

recap

* WWe wanted to show LSTMs can't learn hierarchy.
- ==> We sort-of failed.
 LSTMs learn to cope with natural-language
patterns that exhibit hierarchy, based on

minimal and indirect supervision.

 But some sort of relevant supervision is required.



Can a Transtormer i
earn agreement?

Assessing BERT’s Syntactic Abilities

Yoav Goldberg'*

1 Computer Science Department, Bar Ilan University
2 Allen Institute for Artificial Intelligence
yogo@cs.biu.ac.il , yoav@allenai.org
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Can a Transformer —
earn agreement?

Attractors BERT Base BERT Large # sents

1 0.97 0.97 24031
2 0.97 0.97 4414
3 0.96 0.96 946
4 0.97 0.96 254

BERT does extremely well

Assessing BERT’s Syntactic Abilities

Yoav Goldberg'*
1 Computer Science Department, Bar Ilan University
2 Allen Institute for Artificial Intelligence
yogo@cs.biu.ac.il , yoav@allenai.org



“©* The agreement experiment:

recap

* | wanted to show Transformers can't learn hierarchy.
- =-=> Major fail. They are amazing.

- But how do they do it??

we don't know. :-(
yet.



The agreement experiment:
aftermath

This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski Edouard Grave
Department of Linguistics Facebook AI Research Facebook AI Research
University of Geneva Paris New York

kristina.gulordava@unige.ch bojanowski@Rfb.com egrave@fb.com

Tal Linzen Marco Baroni
Department of Cognitive Science Facebook AI Research
Johns Hopkins University Paris

tal.linzen@jhu.edu mbaroni@fb.com
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NLP
This triggered a lot of very interesting work!
Colorless green recurrent networks dream hierarchically
Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,
- University of Geneva - Pans But Modeling Structure Makes Them Better
kristina.gulordava@unige.ch bojanowski@Rfb.com
Adhiguna Kuncoro®* Chris Dyer® John Hale*"
Tal Linzen Dani Yogatama® Stephen Clark® Phil Blunsom**
Department of Cognitive Science F #DeepMind, London, UK
Johns Hopkins University *Department of Computer Science, University of Oxford, UK
tal.linzen@jhu.edu YDepartment of Linguistics, Cornell University, NY, USA

{akuncoro,cdyer,jthale,dyogatama,clarkstephen,pblunsom}@google.com
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NLP
This triggered a lot of very interesting work!
Colorless green recurrent networks dream hierarchically
Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,
krisilijir:ll: e ;lelltzr(c)li\izzli‘i/;le .ch bojanofsiris@ fb.com But MOdeling StrHCture Makes Them Better

" Chris Dyer® John Hale*"
»hen Clark® Phil Blunsom**
ind, London, UK

Science, University of Oxford, UK
ics, Cornell University, NY, USA

Targeted Syntactic Evaluation of Language Models

Rebecca Marvin Tal Linzen L rksteshen obi e .
. .. . ima, clarKkste en, unsom (e]®) e.com
Department of Computer Science Department of Cognitive Science pRenp 9008
Johns Hopkins University Johns Hopkins University

becky@jhu.edu tal.linzen@jhu.edu



The agreement experiment:
aftermath

This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski
Department of Linguistics Facebook Al Researct LSTMs Can Learn Syntax-Sensitive Dependencies Well,
- University of Geneva - Pans But Modeling Structure Makes Them Better
kristina.gulordava@unige.ch bojanowski@Rfb.com
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shen Clark® Phil Blunsom**

Targeted Syntactic Evaluation of Language Models

RNN:ss as psycholinguistic subjects: Syntactic state and grammatical

. dependency
Rebecca Marvin
Department of Computer Science Depart: Richard Futrell!, Ethan Wilcox?, Takashi Morita>*, and Roger Levy5

Johns Hopkins University Joh 'Department of Language Science, UC Irvine, rfutrell@uci.edu
becky@jhu.edu tal 2Department of Linguistics, Harvard University, wilcoxeg@g.harvard.edu
3Primate Research Institute, Kyoto University, tmorita@alum.mit.edu
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The agreement experiment:
aftermath

This triggered a lot of very interesting work!

Colorless green recurrent networks dream hierarchically

Kristina Gulordava* Piotr Bojanowski
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- University of Geneva - Pans But Modeling Structure Makes Them Better
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"""English Is so simple though.
| et's crank up the complexity.

Can LSTM Learn to Capture Agreement? The
Case of Basque

Shauli Ravfogel, Francis M. Tyers, Yoav Goldberg
(Submitted on 11 Sep 2018 (v1), last revised 26 Nov 2018 (this version, v4))




Basgue Is complex

o Verbs agree with all their arguments (polypersonal agreement)
o Explicit case marking on NPs

o Relatively flexible word order

o Ergative case system

o Morphologically rich

TTTTTTTTTTTTTT
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Basgue Is complex
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All scores in Basque were much lower than in English.
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Basgue Is complex

All scores in Basque were much lower than in English.
But why?

Limited data” Poly-personal agreement? Ergativity”
Word-order? Ditferent domains?
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Better variable control

Studying the Inductive Biases of RNNs with
Synthetic Variations of Natural Languages

Shauli Ravfogel, Yoav Goldberg, Tal Linzen
(Submitted on 15 Mar 2019 (v1), last revised 26 Mar 2019 (this version, v2))




I\%‘/II) T h e s c I e n ce Way : A ARTIEICIL INTELL e

Better variable control

Studying the Inductive Biases of RNNs with
Synthetic Variations of Natural Languages

Shauli Ravfogel, Yoav Goldberg, Tal Linzen
(Submitted on 15 Mar 2019 (v1), last revised 26 Mar 2019 (this version, v2))

Create synthetic variants of English corpus

imitating the phenomena we care about
,~




TTTTTTTTTTTTTT

vir o English + Polypersonal
Agreement

they saykon the broker tookkarker them out for lunch frequently .
(kon: plural subject; kar: singular subject; ker: plural object)




B |

N L

SVO
SOV
VOS
VSO
OSV
OVS

= K2
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PEngHsh ~> Word Orders

they say the broker took out frequently them for lunch .
they the broker them took out frequently for lunch sav .
say took out frequently them the broker for lunch they.
say they took out frequently the broker them for lunch .
them the broker took out frequently for lunch they sav .
them took out frequently the broker for lunch say they .




English + Case Marking

IIIIIIIIIIIIIIIIIIIIIIIIII

Unambiguous theykon saykon the brokerkar tookkarker theyker out for lunch frequently .
(kon: plural subject; kar: singular subject; ker: plural object)
Syncretic theykon saykon the brokerkar tookkarkar theykar out for lunch frequently .

(kon: plural subject; kar: plural object/singular subject)
Argument marking theyker sayker the brokerkin tookkerkin theyker out for lunch frequently .
(ker: plural argument,; kin: singular argument)




Conclusions? Check the paper.
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ALLEN INSTITUTE
for ARTIFICIAL INTELLIGENCE

Q4: when do models fail? what did they *really* learn?

google
‘clever hans'

This horse knows how to perform math!!
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Q4: when do models fail? what did they *really* learn?

Methodology:
create specific examples that
make seemingly great models fail




B 1 Y Methodology: '
= odotogy K2
N L P create specific examples that T

make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

| O
, Build It, Break It i

7\ The Language Edition A\

join our workshop.at.emntp2017

designed & implemented by

Emily M. Bender Hal Daumé il Allyson Ettinger

?
/
@ /\

Harita Kannan Sudha Rao Ephraim Rethschild




B 1 U Methodology: '
= odotogy K2
N L P create specific examples that T,

make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

ACL 2018 Breaking NLI Systems
with Sentences that Require Simple Lexical Inferences

Max Glockner!', Vered Shwartz® and Yoav Goldberg”

IComputer Science Department, TU Darmstadt, Germany
2Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel
{maxg216,veredl1986, yoav.goldberg}@gmail.com




B 1 U Methodology: '
= odotogy K2
N L P create specific examples that T,

make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

ACL 2019

Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in
Natural Language Inference

R. Thomas McCoy,! Ellie Pavlick,”> & Tal Linzen!
'Department of Cognitive Science, Johns Hopkins University
’Department of Computer Science, Brown University
tom.mccoy@jhu.edu,ellie pavlick@brown.edu,tal.linzen@jhu.edu
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N L P create specific examples that T,

make seemingly great models fail.

Q4: when do models fail? what did they *really* learn?

Heuristic Definition Example

Lexical overlap Assume that a premise entails all hypothe- The doctor was paid by the actor.

ses constructed from words in the premise WRONG> The doctor paid the actor.
Subsequence Assume that a premise entails all of its The doctor near the actor danced.
contiguous subsequences. » The actor danced.
WRONG
Constituent Assume that a premise entails all complete If the artist slept, the actor ran.
subtrees in its parse tree. > The artist slept.
WRONG

Table 1: The heuristics targeted by the HANS dataset, along with examples of incorrect entailment predictions that
these heuristics would lead to.
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Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what did they *really* learn?
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Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what did they *really* learn?

The Nature of ...
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Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what did they *really* learn?

The Nature of.. Treat the representations / model
- as an "organism®.

Come up with hypotheses.
Perform experiments.
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Q1: how did a given model reach a decision?
how is the architecture capturing the phenomena?

Q2: What is encoded/captured in a vector?

Q3: what kinds of linguistic structures
can be captured by an RNN?

Q4: when do models fail? what did they *really* learn?

The Nature of.. Treat the representations / model
j | as an "organism".

Come up with hypotheses.
Perform experiments.

‘»‘
R4we never learned to do this in CS :(

N
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[\% our latest effort in this space (no slides yet..) klz

oLMpics - On what Language Model Pre-training Captures

Alon Talmor'?  Yanai Elazar'®  Yoav Goldberg!®  Jonathan Berant'?

IThe Allen Institute for Al
2Tel-Aviv University
>Bar-Ilan University
{alontalmor@mail, joberant@cs}.tau.ac.1il,
{yvanaiela,yoav.goldberg}@gmail.com

Q4: when do models fail? what did they *really* learn?




Q5: What is the representation power
of different architectures?

Q6: Extracting a discrete representation
from a trained model.
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Q5: What is the representation power
of different architectures?

Q6: Extracting a discrete representation
from a trained model.

Back to a "familiar territory".
Computer science. Math.




Agenaa

e RNNs
 Formal expressive power of RNNs

e Extracting FSAs from RNNs
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QOO 1000 OO 1000~ - | O00O0

viwhat)  v(is) v(your) v(name) enc(what is your name)

* Very strong models of sequential data.

* Trainable function from n vectors to a single vector.
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* Same interface. Same power?

b (OOOO

* [here are different variants (Implementations).
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Q5: What is the representation power
of different architectures?
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Q5: What is the representation power
of different architectures?

Recurrent Neural Networks as Weighted Language Recognizers

Yining Chen Sorcha Gilroy Andreas Maletti
Dartmouth College ILCC Institute of Computer Science
yining.chen.18@dartmouth.edu University of Edinburgh Universitét Leipzig

s.gilroy@sms.ed.ac.uk andreas.maletti@uni-leipzig.de

Jonathan May Kevin Knight
Information Sciences Institute Information Sciences Institute
University of Southern California University of Southern California

jonmay@isi.edu knight@isi.edu
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Rational Recurrences = il

Hao Peng® Roy Schwartz®” Sam Thomson®* Noah A. Smith¢¥
OPaul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
*Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA

¥ Allen Institute for Artificial Intelligence, Seattle, WA, USA
{hapeng, roysch,nasmith}@cs.washington.edu, sthomson@cs.cmu.edu

Q5: What is the representation power
of different architectures?

Recurrent Neural Networks as Weighted Language Recognizers

Yining Chen Sorcha Gilroy Andreas Maletti
Dartmouth College ILCC Institute of Computer Science
yining.chen.18@dartmouth.edu University of Edinburgh Universitét Leipzig

s.gilroy@sms.ed.ac.uk andreas.maletti@uni-leipzig.de

Jonathan May Kevin Knight
Information Sciences Institute Information Sciences Institute
University of Southern California University of Southern California

jonmay@isi.edu knight@isi.edu



Q5: What is the representation power
of different architectures?

are all RNNs equivalent?
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On the Practical Computational Power of Finite Precision RNNs
for Language Recognition

Gail Weiss Yoav Goldberg Eran Yahav
Technion, Israel Bar-Ilan University, Israel Technion, Israel

{sgailw,yahave}@cs.technion.ac.il
yogo@dcs.biu.ac.il
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RNNs have Turing Power”

A
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On the Computational Power of Neural Nets*

HAvA T. SIEGELMANN'

Department of Information Systems Engineering, Technion, Haifa 32000, Israel

AND

EpuARDO D. SONTAG?

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
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RNNs have Turing Power”

On the Computational Power of Neural Nets*

HAvA T. SIEGELMANN'

Department of Information Systems Engineering, Technion, Haifa 32000, Israel

AND

EpuARDO D. SONTAG?

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power”

~ On _the Computational Power of Neural

|

‘ Proof requires infinite precision.
‘push O into stack™ g =g/4 + 1/4 ;
this allows pushing 15 zeros when using 32 bit floating point. |

ets*

— = — e _— — __ e —— —

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power?

_On_the Computational Power of Neural N
\ W

| !
Construction requires complex combination of many |
carefully crafted components. ‘

__ _ __

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNNs have Turing Power”

On_the Computational Power of Neural Nets*

r!

. Construction requires extra processing time
at the end of the sequence. ‘

we use ‘real time" RNNs in practice.

|! _

Received February 4, 1992; revised May 24, 1993

YES, THEY DO!
But this answer is not very useful.
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RNN Flavors

ht — R(th) ht—l)

A

Eiman RNN (SRNN) Saturating activation.
ht — taﬂh(Wﬁt -+ Uht_l -+ b)

IRNN Rel.U activation.
ht — max((), (Wﬂft -+ Uht_l -+ b))
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RNN Flavors

ht — R(th) ht—l)

Gated Recurrent Unit
— O'(WZZIZt T Uzht_l T bz)
— O'(Wr$t T Urht_l I br)
= tanh(W"z + U"(ry 0 hy_1) + 0)
= ziohs 1+ (1 —2z)ohy

LSTM

c(W/ay + U hy_y + )
o(W'xy + Ulhy_1 + b*)

o (WOzs + UChs_1 + b°)
tanh(Wx; + U hi—1 + b°)
Jtoci—1 +i0c

O¢ O Q(Ct)
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RNN Flavors

ht — R(th) ht—l)

With finite precision, EIman RNNs are Finite State.

We do not know much about other flavors.
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A

Gated architectures (GRU, LSTM)
are petter than
non-Gated architectures (SRNN, [RNN)
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A

Gated architectures (GRU, LSTM)
are petter than
non-Gated architectures (SRNN, [RNN)

we show that in terms of expressive power,
there Is an aspect in which:

LSTM > GRU
IRNN > SRNN
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Power of Counting

Counter Machines and Counter Languages™

by

PaTrick C. FISCHERZE
Cornell University
Ithaca, New York

and

ALBERT R. MEYERY and ArRNOLD L. ROSENBERG
IBM Watson Research Center
Yorktown Heights, New York

(1968)
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Power of Counting

Counter Machines and Counter Languages™{

e — —

| counter machines are |
Finite State Automata with k counters.

INC, DEC, Compare0

YOrktown Heig

(1968)
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Chomsky Hierarchy
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Chomsky Hierarchy

Context Free
Regular Languages
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Chomsky Hierarchy

Context Free
Regular Languages

T 1.7
a b Palindromes
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Chomsky Hierarchy

Context Free
Regular Languages

Context Sensitiv
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Chomsky Hierarchy

Context Free
Regular Languages

Context Sensitiv
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Power of Counting

A

ontext Free
Regular Languages

Counter Context Sensitiv
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ContextlSensitive

T 1.1
a b Cln ann Palindromes
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ontext Free

Regular Languages
GRU / SRNN

ContextlSensitive

T 1.1
a b Cln ann Palindromes
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A

ontext Free

Regular Languages
GRU / SRNN

ContextlSensitive

T 1.1
a b Cln ann Palindromes
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IRNN [ LSTM can count

ft — O'(Wfil’)t —+ Ufht_l —I—bf)
it — O'(Wiilft Uiht_l bz)

Or — O'(Woft -+ UOht_l -+ bO)
Et — tanh(cht -+ Ucht_l -+ bc)
ct = JtocC—1+1t0¢C

hy = OtOg(Ct)
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IRNN / LSTM can count

fi = oW/lay+U h_y +b))
it — O'(Wiilft Uiht_l bz)

Or — O'(Woft -+ UOht_l -+ bO)
1 Et — tanh(cht -+ Ucht_l -+ bc)
(via sigmoid) ct = JtOC—1 T 10c
he = otog(c) \
/ 1,

compare to zero is easy (via tanh)
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countmg s EASY!
iﬂ Just needs to saturate 3 gates B

Or — O'(Woft -+ UOht_l -+ bO)
1 Et — tanh(cht -+ Ucht_l -+ bc)
(via sigmoid) ct = JtOC—1 T 10c
he = otog(c) \
/ 1,

compare to zero is easy (via tanh)



IRNN [ LSTM can count

IRNN
ht — mam((), (Wﬁlft -+ Uht_l -+ b))

a

+1 in one dim =INC
+1 in other dim =DEC

compare to zero
by subtracting dims
(requires MLP)



~w

B | U TECHNION .
Israel Institute

o M X2

N L TTTTTTTTTTTTTT

SRNN

ht — tanh(Wa?t -+ Uht_l -+ b)
T

squashing prevents counting



GRU
2z = o(W?xy +U%hy_1 + b°)
ri = oW xr+U"hi_1+b")
hy — tanh(tht + Uh(rt o ht 1)+ bh)
hy = zzohi—1+ (1 — 2) oht

\ N

gate tie prevents counting
(via tanh
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can do some bounded countlng W|th|n the 1 1range |
hard: redumng premse settmg of non- saturated values |

ht — ZtOht 1—|—('_—Zt)0ht

ht — taﬂh(Whﬂft n Uh(Tt O ht—l) -+ bh)

NN

gate tie prevents counting

-1, 1
(via tanh)
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Counting in some other way”

cannot implement a binary-counter (or any k-base counter)
in a single SRNN step.
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| STM vs. GRU

train on anb up to Nn=100
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| STM vs. GRU

e S

.

0 250 500 750 1000 1250 1500 1750 2000

(a) a"b"-LSTM on a'?%0p1000

train on anb up to Nn=100

TTTTTTTTTTTTTT
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l‘ - /
f
_0 . 7 5 7 \\‘ // |
A \ ‘\»\“—__ — //
. - |

100 A1

0.75 -

0.50 -

0.25
0.00 -

-0.25

—-0.50 A

- -1.00 { ° —

0

>0 50 70 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

(a) a™b"-LSTM on q!Y90p1000 (¢) a™b™-GRU on 199051000
train on a"b" up to N=100

GRU starts to fail at n=38

TTTTTTTTTTTTTT
llllllllllllllllllllllllll
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100 -

0 50 100 150 200 250 300

(b) a"b"c"*-LSTM on q!%0p100100

train on anbnhen up to N=50
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| STM vs. GRU

100 A1

0.75 -

0.50 A

0.25 -
0.00 -

-0.25 -

-0.50 -

-0.75 1

-1.00 -

0 50 100 150 200 250 300

(b) a"b"c"*-LSTM on q!%0p100100

L& —
150 2

0 50 100

(d) a"b"c"-GRU on 1905100100

00 250

train on anbnhen up to N=50

GRU starts to fail at n=8

TTTTTTTTTTTTTT
llllllllllllllllllllllllll
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L

* Escape Turing-completeness by looking into
finite-precision, real-time RNN

* Real difference in expressive power between
SENN, GRU] and [IRNN, LSTM].

e Small architectural choices can matter.

TTTTTTTTTTTTTT
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Q6: Extracting a discrete representation
from a trained model.

what do trained LSTM acceptors encode”

Extracting FSAs from RNNs

TTTTTTTTTTTTTT
llllllllllllllllllllllllll
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Extracting Automata from Recurrent Neural Networks
Using Queries and Counterexamples

Gail Weiss!, Yoav Goldberg?, and Eran Yahav'!

(ICML 2018)



RNN acceptors as .
State Machines
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State Machines

loss

/ predict & 7 predict &

\

v predict &

‘ ‘ L predict & ‘, predict &
‘. calcloss . calcloss . calcloss . calcloss . calc loss

S _ - S o _- ~ _ - ~ _ - - -

{}ﬁ {}b {Y3 {yzl {Ys
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State Machines

loss

——

¥ predict & . predict & /. predict &
/

| |
/. caleloss . calcloss . calc loss

/ predict & 7 predict &
| |
‘. calcloss .. calc loss

{}ﬁ {yZ {}’B {y;; {y5
S L ---E S L S L ---E S L S L ---E
>~ RO —— RO — RO +———~ RO +—— R, !
X1 Xo X3 X4 X5

state
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State Machi
loss
- sum
,’/predict & \\\\ /’//predict & \\\\ ,’/predict & \\\\ ,’/predict & \\\\ ,’/predict & \\\\
‘. calcloss ' calcloss 0 calcloss S caleloss 0 cale loss
{}ﬁ {}b {Y3 {yzl {Ys
S L ---E S+ ' sg 4 ---E S T ---E
>~ RO —— RO — RO +———~ RO +—— R, !
X1 X2 X3 X4 X5

MZ
ALLEN INSTITUTE

for ARTIFICIAL INTELLIGENCE
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RNN acceptors as
State Machines

loss

/ predict & 7 predict &

v predict &

—

v predict & 7 predict &

\

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

® 4 RO +—+ RO 24 RO 4 RO 24 RO |
X1 Xo X3 X4 X5

staté  input new

symbpol state

TTTTTTTTTTTTTT
||||||||||||||||||||||||
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RNN acceptors as
State Machines

loss

accept/reject

N

/ predict & 7 predict &

—

v predict & 7 predict &

v predict &

\

| | | | |
‘. calcloss . calcloss . calcloss . calcloss . - calcloss

® 4 RO +—+ RO 24 RO 4 RO 24 RO |
X1 Xo X3 X4 X5

staté  input new

symbpol state

TTTTTTTTTTTTTT
||||||||||||||||||||||||



“tr — RNN acceptors as e
State Machines

accept/reject

| very similar to FSA ‘
unfortunately the states are contlnuous vectors '

_____________________________________________

iINnput new
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INFORMATION AND COMPUTATION 7§, 87-106 (1987)

Learning Regular Sets from Queries
and Counterexamples™

DANA ANGLUIN

Department of Computer Science, Yale University,
P.O. Box 2158, Yale Station, New Haven, Connecticut 06520
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Finite State Automata

- L* algorithm
 FSAs are learnable from "minimally adequate teacher’

* Membership queries

"does this word belong in the language™”"

* Equivalence queries

"does this automaton represent the language™”
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Game Plan

* Jrain an RNN
* Use it as a Teacher in the L™ algorithm

 |L*learns the FSA represented by the RNN
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Minimally Adequate leacher

A

Membership Queries

Easy. Just run the word through the RNN.

Equivalence Queries

Hard. Requires some trickery.
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Equivalence Queries

 Map RNN states to discrete states, forming an FSA
abstraction of the RNN.
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Equivalence Queries

 Compare L* Query FSA to RNN-Abstract-FSA.

A
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Equivalence Queries

a b
b
a,b
b a

 Maybe state-mapping is wrong.
It so: refine the mapping.

A

e Conflict”

 Maybe L* FSA is wrong.
If so: return a counter example.
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Some Results

- Many random FSAs:

* 5 or 10 states, alphabet sizesof 3 or 5
* LSTM/GRU with 50, 100, 500 dimensions.
 The FSAs were learned well by LSTM / GRU

* And recovered well by L*.
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'lIsts or dicts’

« I
* S
* [FISIOIFINIT]

- {S:}F,S:}¥,S:0,S:T,S:S,S:N}

alphabet: s O N T , : { } [ ]



S NTLLY

S ENTLLL

start

>
99

. .
.

F.S

|

’—" .

0:ENSTLI{ [ 4
0:FENST[]{)}

NS T}

perfect!

0, FENS.TJ[.{.}

RANEN
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Balanced Parenthesis

(a((ejka((acs)) (asdsa))djljf)kls(fjkljklkids))

alphabet: a-z ( )
nesting level up to 8.
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Balanced Parenthesis

A

start I XA-Z
A

(,))
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Balanced Parenthesis
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start. . Ja-z
(/)

\-Z

).a-zZ
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Balanced Parenthesis
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start ; )d-l




Balanced Parenthesis
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Balanced Parenthesis

TTTTTTTTTTTTTT
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final automaton:
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Balanced Parenthesis
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final automaton:




LY e A12
Balanced Parenthesis
};\ u not quit right

final automaton:
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])

TTTTTTTTTTTTTT
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net
[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])
20,000 positive examples

20,000 negative examples
2,000 examples dev set
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‘Emails’

- blal2@abc.com, ahjlkoo@jjjgs.net

[a-z] [2a-20-9]*@[a-2z0-9]+\. (com|net|co\.[a-z] [a-z])

20,000 positive examples
20,000 negative examples
2,000 examples dev set

LSTM has 100% accuracy on both train and dev (and test)
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the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

LSTM has 100% accuracy on both train and dev (and test)
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the extraction algorithm did not converge.
we stopped it when it reached over 500 states.

some counter-examples it found:

25 . net

5x.nem
2hs.net

LSTM has 100% accuracy on both train and dev (and test)
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- We can extract FSAs from RNNs

* ... If the RNN indeed captured a regular structure

* ... and in many cases the representation
captured by the RNN is much more complex
(and wrong!) than the actual concept class.
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Much more to do:

scale to larger FSAs and alphabets
scale to non-regular languages

apply to "real” language data

TTTTTTTTTTTTTT
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scratching the black box

 |LSTMs (deep nets, Transformers, ...) are very powerful

We know how to use them.

We don't know enough about their power and limitations.
Our intuitions are often wrong.

We should try to understand them better.

Using Algorithms, using Math, or using Science.

- Very excited to see the evolving community around these

questions. Join the fun.



1o summarize

scratching the black box

Thanks.
Questions?




