
Transfer Learning in NLP
NLPL Winter School

Thomas Wolf - HuggingFace Inc.

1

Overview

❏ Session 1: Transfer Learning - Pretraining and representations
❏ Session 2: Transfer Learning - Adaptation and downstream tasks
❏ Session 3: Transfer Learning - Limitations, open-questions, future directions

Sebastian
Ruder

Matthew
Peters

Swabha
Swayamdipta

Many slides are adapted from a Tutorial on
Transfer Learning in NLP I gave at NAACL
2019 with my amazing collaborators
👈

2

Transfer Learning in NLP
NLPL Winter School

Session 2

3

Transfer Learning in Natural Language ProcessingTransfer Learning in NLP

Follow along with the tutorial:

❏ Colab: https://tinyurl.com/NAACLTransferColab
❏ Code: https://tinyurl.com/NAACLTransferCode

4

https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

5

#
#
#
#
#
#

4. Adaptation

Image credit: Ben Didier
6

Several orthogonal directions we can make decisions on:

1. Architectural modifications?
How much to change the pretrained model architecture for adaptation

2. Optimization schemes?
Which weights to train during adaptation and following what schedule

3. More signal: Weak supervision, Multi-tasking & Ensembling
How to get more supervision signal for the target task

4 – How to adapt the pretrained model

4.1 – Architecture

Two general options:

Image credit: Darmawansyah

A. Keep pretrained model internals unchanged:
Add classifiers on top, embeddings at the bottom, use outputs as features

B. Modify pretrained model internal architecture:
Initialize encoder-decoders, task-specific modifications, adapters

8

4.1.A – Architecture: Keep model unchanged
General workflow:

9

1. Remove pretraining task head if not useful for
target task
a. Example: remove softmax classifier from pretrained

LM
b. Not always needed: some adaptation schemes

re-use the pretraining objective/task, e.g. for
multi-task learning

4.1.A – Architecture: Keep model unchanged
General workflow:

Task-specific, randomly initialized

General,
pretrained

10

2. Add target task-specific layers on
top/bottom of pretrained model
a. Simple: adding linear layer(s) on top of

the pretrained model

4.1.A – Architecture: Keep model unchanged
General workflow:

2. Add target task-specific layers on
top/bottom of pretrained model
a. Simple: adding linear layer(s) on top of

the pretrained model
b. More complex: model output as input for

a separate model
c. Often beneficial when target task requires

interactions that are not available in
pretrained embedding

11

4.1.B – Architecture: Modifying model internals
Various reasons:

12

1. Adapting to a structurally different target
task

a. Ex: Pretraining with a single input sequence (ex:
language modeling) but adapting to a task with
several input sequences (ex: translation, conditional
generation...)

b. Use the pretrained model weights to initialize as
much as possible of a structurally different target
task model

c. Ex: Use monolingual LMs to initialize encoder and
decoder parameters for MT (Ramachandran et al.,
EMNLP 2017; Lample & Conneau, 2019)

https://arxiv.org/abs/1611.02683
https://arxiv.org/abs/1611.02683
http://arxiv.org/abs/1901.07291

4.1.B – Architecture: Modifying model internals
Various reasons:

13

2. Task-specific modifications
a. Provide pretrained model with capabilities that

are useful for the target task
b. Ex: Adding skip/residual connections, attention

(Ramachandran et al., EMNLP 2017)

https://arxiv.org/abs/1611.02683

4.1.B – Architecture: Modifying model internals

3. Using less parameters for
adaptation:
a. Less parameters to fine-tune
b. Can be very useful given the increasing

size of model parameters
c. Ex: add bottleneck modules (“adapters”)

between the layers of the pretrained
model (Rebuffi et al., NIPS 2017; CVPR
2018)

14

Various reasons:

https://arxiv.org/abs/1705.08045
https://arxiv.org/abs/1803.10082
https://arxiv.org/abs/1803.10082

4.1.B – Architecture: Modifying model internals
Adapters

Image credit: Caique Lima
15

❏ Commonly connected with a residual
connection in parallel to an existing
layer

❏ Most effective when placed at every
layer (smaller effect at bottom layers)

❏ Different operations (convolutions,
self-attention) possible

❏ Particularly suitable for modular
architectures like Transformers
(Houlsby et al., ICML 2019; Stickland
and Murray, ICML 2019)

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

4.1.B – Architecture: Modifying model internals

❏ Multi-head attention (MH; shared
across layers) is used in parallel
with self-attention (SA) layer of
BERT

❏ Both are added together and fed
into a layer-norm (LN)

16

Adapters (Stickland & Murray, ICML
2019)

https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

Hands-on #2:
Adapting our pretrained model

Image credit: Chanaky
17

Hands-on: Model adaptation

❏ Plan
❏ Start from our Transformer language model
❏ Adapt the model to a target task:

❏ keep the model core unchanged, load the pretrained weights
❏ add a linear layer on top, newly initialized
❏ use additional embeddings at the bottom, newly initialized

❏ Reminder — material is here:
❏ Colab http://tiny.cc/NAACLTransferColab ⇨ code of the following slides
❏ Code http://tiny.cc/NAACLTransferCode ⇨ same code in a repo

Let’s see how a simple fine-tuning scheme can be implemented with our pretrained model:

18

http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Adaptation task
❏ We select a text classification task as the downstream task

❏ TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002)

❏ TREC consists of open-domain, fact-based questions divided into broad semantic categories contains
5500 labeled training questions & 500 testing questions with 6 labels:

NUM, LOC, HUM, DESC, ENTY, ABBR

Hands-on: Model adaptation

Ex:
★ How did serfdom develop in and then leave Russia ? —> DESC
★ What films featured the character Popeye Doyle ? —> ENTY

(Howard and Ruder, ACL 2018)

Transfer learning models
shine on this type of
low-resource task

19

https://aclweb.org/anthology/C02-1150
https://arxiv.org/abs/1801.06146

❏ Modifications:
❏ Keep model internals unchanged
❏ Add a linear layer on top
❏ Add an additional embedding (classification token) at the bottom

❏ Computation flow:
❏ Model input: the tokenized question with a classification token at the end
❏ Extract the last hidden-state associated to the classification token
❏ Pass the hidden-state in a linear layer and softmax to obtain class

probabilities

Hands-on: Model adaptation

(Radford et al., 2018)

First adaptation scheme

20

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Use fine tuning hyper parameters
from Radford et al., 2018:

● learning rate from 6.5e-5 to 0.0
● fine-tune for 3 epochs

- trim to the transformer input size &
add a classification token at the end
of each sample,
- pad to the left,
- convert to tensors,
- extract a validation set.

21

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation
Adapt our model architecture

Replace the pre-training head
(language modeling) with the
classification head:
A linear layer, which takes as
input the hidden-state of the
[CLF] token (using a mask)

Keep our pretrained model
unchanged as the backbone.

* Initialize all the weights of
the model.
* Reload common weights
from the pretrained model.

22

Hands-on: Model adaptation
Our fine-tuning code:

We will evaluate on our
validation and test sets:
* validation: after each epoch
* test: at the end

A simple training update
function:
* prepare inputs: transpose
and build padding &
classification token masks
* we have options to clip and
accumulate gradients

Schedule:
* linearly increasing to lr
* linearly decreasing to 0.0

23

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

We are at the state-of-the-art
(ULMFiT)

Remarks:
❏ The error rate goes down quickly! After one epoch we already have >90% accuracy.

⇨ Fine-tuning is highly data efficient in Transfer Learning
❏ We took our pre-training & fine-tuning hyper-parameters straight from the literature on related models.

⇨ Fine-tuning is often robust to the exact choice of hyper-parameters

24

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few
additional words on robustness & variance.
❏ Large pretrained models (e.g. BERT large) are

prone to degenerate performance when fine-tuned
on tasks with small training sets.

❏ Observed behavior is often “on-off”: it either works
very well or doesn’t work at all.

❏ Understanding the conditions and causes of this
behavior (models, adaptation schemes) is an
open research question.

Phang et al., 2018 25

https://arxiv.org/abs/1811.01088v2

4.2 – Optimization

Several directions when it comes to the optimization itself:

Image credit: ProSymbols, purplestudio, Markus, Alfredo
26

A. Choose which weights we should update
Feature extraction, fine-tuning, adapters

B. Choose how and when to update the weights
From top to bottom, gradual unfreezing, discriminative fine-tuning

C. Consider practical trade-offs
Space and time complexity, performance

4.2.A – Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

Image credit: purplestudio
27

A. Do not change pretrained weights
Feature extraction, adapters

B. Change pretrained weights
Fine-tuning

4.2.A – Optimization: Which weights?

❄

28

Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen
❏ A linear classifier is trained on top of

the pretrained representations

❄

29

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Feature extraction:
❏ Weights are frozen
❏ A linear classifier is trained on top of the

pretrained representations
❏ Don’t just use features of the top layer!
❏ Learn a linear combination of layers

(Peters et al., NAACL 2018, Ruder et al.,
AAAI 2019)

30

❄

https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1705.08142
https://arxiv.org/abs/1705.08142

4.2.A – Optimization: Which weights?

Don’t touch the pretrained
weights!

Feature extraction:
❏ Alternatively, pretrained

representations are used as
features in downstream model

31

4.2.A – Optimization: Which weights?
Don’t touch the pretrained
weights!

Adapters
❏ Task-specific modules that are

added in between existing layers

32

4.2.A – Optimization: Which weights?

Don’t touch the pretrained
weights!

Adapters
❏ Task-specific modules that are

added in between existing layers
❏ Only adapters are trained

33

4.2.A – Optimization: Which weights?
Yes, change the pretrained weights!

34

Fine-tuning:

❏ Pretrained weights are used as initialization
for parameters of the downstream model

❏ The whole pretrained architecture is trained
during the adaptation phase

Hands-on #3:
Using Adapters and freezing

Image credit: Chanaky
35

❏ Modifications:
❏ add Adapters inside the backbone

model: Linear ⇨ ReLU ⇨ Linear
with a skip-connection

❏ As previously:
❏ add a linear layer on top
❏ use an additional embedding

(classification token) at the bottom

Hands-on: Model adaptation
Second adaptation scheme: Using Adapters

❏ Houlsby et al., ICML 2019

We will only train the adapters, the added
linear layer and the embeddings. The other
parameters of the model will be frozen.

36

https://arxiv.org/abs/1902.00751

Hands-on: Model adaptation
Let’s adapt our model architecture

Add the adapter modules:
Bottleneck layers with 2 linear
layers and a non-linear
activation function (ReLU)

Hidden dimension is small:
e.g. 32, 64, 256

Inherit from our pretrained
model to have all the modules.

The Adapters are inserted inside
skip-connections after:
❏ the attention module
❏ the feed-forward module

37

Hands-on: Model adaptation
Now we need to freeze the portions of our model we don’t want to train.

We just indicate that no gradient is needed for the frozen parameters by setting
param.requires_grad to False for the frozen parameters:

In our case we will train 25% of the parameters. The model is small & deep (many adapters) and we need
to train the embeddings so the ratio stay quite high. For a larger model this ratio would be a lot lower.

38

Hands-on: Model adaptation

Results similar to full-fine-tuning case with advantage of training only 25% of the full model parameters.
For a small 50M parameters model this method is overkill ⇨ for 300M–1.5B parameters models.

We use a hidden dimension of 32 for the adapters and a learning rate ten times higher for the
fine-tuning (we have added quite a lot of newly initialized parameters to train from scratch).

39

4.2.B – Optimization: What schedule?

We have decided which weights to update, but in which order and how should be
update them?

Motivation: We want to avoid overwriting useful pretrained information and
maximize positive transfer.

Related concept: Catastrophic forgetting (McCloskey & Cohen, 1989; French,
1999)
When a model forgets the task it was originally trained on.

Image credit: Markus
40

4.2.B – Optimization: What schedule?
A guiding principle:
Update from top-to-bottom

41

❏ Progressively in time: freezing
❏ Progressively in intensity: Varying the

learning rates
❏ Progressively vs. the pretrained model:

Regularization

4.2.B – Optimization: Freezing
Main intuition: Training all layers at the same time
on data of a different distribution and task may
lead to instability and poor solutions.

Solution: Train layers individually to give them
time to adapt to new task and data.

Goes back to layer-wise training of early deep
neural networks (Hinton et al., 2006; Bengio et al.,
2007).

42

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

43

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer

44

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

45

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

46

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time

47

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time
1. Train new layer
2. Train one layer at a time
3. Train all layers

48

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

49

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

50

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

51

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

52

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs

53

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs
2. Fine-tune pretrained parameters without embedding

layer for epochs
54

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning
1. Fine-tune additional parameters for epochs
2. Fine-tune pretrained parameters without embedding

layer for epochs
3. Train all layers until convergence 55

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B – Optimization: Freezing

❏ Freezing all but the top layer (Long et al.,
ICML 2015)

❏ Chain-thaw (Felbo et al., EMNLP 2017):
training one layer at a time

❏ Gradually unfreezing (Howard & Ruder, ACL
2018): unfreeze one layer after another

❏ Sequential unfreezing (Chronopoulou et al.,
NAACL 2019): hyper-parameters that
determine length of fine-tuning

Commonality: Train all parameters jointly in the
end

56

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

Hands-on #4:
Using gradual unfreezing

Image credit: Chanaky
57

Hands-on: Adaptation
Gradual unfreezing is similar to our previous freezing process.
We start by freezing all the model except the newly added parameters:

We then gradually unfreeze an additional block along the training so that we train the full model at the end:

Find index of layer
to unfreeze

Name pattern
matching

Unfreezing interval

58

Hands-on: Adaptation
Gradual unfreezing has not been investigated in details for Transformer models

⇨ no specific hyper-parameters advocated in the literature
Residual connections may have an impact on the method

⇨ should probably adapt LSTM hyper-parameters

We show simple experiments in the Colab. Better hyper-parameters settings can probably be found.

59

4.2.B – Optimization: Learning rates
Main idea: Use lower learning rates to avoid
overwriting useful information.

Where and when?

❏ Lower layers (capture general information)
❏ Early in training (model still needs to adapt

to target distribution)
❏ Late in training (model is close to

convergence)

60

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning (Howard & Ruder,

ACL 2018)
❏ Lower layers capture general information

→ Use lower learning rates for lower layers

61

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning
❏ Triangular learning rates (Howard & Ruder,

ACL 2018)
❏ Quickly move to a suitable region, then slowly

converge over time

62

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B – Optimization: Learning rates
❏ Discriminative fine-tuning
❏ Triangular learning rates (Howard & Ruder,

ACL 2018)
❏ Quickly move to a suitable region, then slowly

converge over time
❏ Also known as “learning rate warm-up”
❏ Used e.g. in Transformer (Vaswani et al., NIPS

2017) and Transformer-based methods (BERT,
GPT)

❏ Facilitates optimization; easier to escape
suboptimal local minima

63

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

4.2.B – Optimization: Regularization
Main idea: minimize catastrophic forgetting by
encouraging target model parameters to stay
close to pretrained model parameters
using a regularization term .

64

4.2.B – Optimization: Regularization
❏ Simple method:

Regularize new parameters
not to deviate too much
from pretrained ones (Wiese
et al., CoNLL 2017):

65

https://www.aclweb.org/anthology/K17-1029
https://www.aclweb.org/anthology/K17-1029

4.2.B – Optimization: Regularization
❏ More advanced (elastic

weight consolidation; EWC):
Focus on parameters that
are important for the
pretrained task based on the
Fisher information matrix
(Kirkpatrick et al., PNAS
2017):

66

https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521

4.2.B – Optimization: Regularization

EWC has downsides in continual
learning:

❏ May over-constrain
parameters

❏ Computational cost is linear
in the number of tasks
(Schwarz et al., ICML 2018)

67

https://arxiv.org/abs/1805.06370

4.2.B – Optimization: Regularization

❏ If tasks are similar, we may
also encourage source and
target predictions to be close
based on cross-entropy,
similar to distillation:

68

Hands-on #5:
Using discriminative learning

Image credit: Chanaky
69

Hands-on: Model adaptation
Discriminative learning rate can be implemented using two steps in our example:

We can then compute the learning rate of each group depending on its label (at each training iteration):

First we organize the parameters of the various layers in labelled parameters groups in the optimizer:

Hyper-parameter

70

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.C – Optimization: Trade-offs

71

A. Space complexity
Task-specific modifications, additional parameters, parameter reuse

B. Time complexity
Training time

C. Performance

4.2.C – Optimization trade-offs: Space

Many Few

Feature extraction Fine-tuningAdapters
Task-specific modifications

Many Few

Feature extraction Fine-tuningAdaptersAdditional
parameters

All None

Feature extraction Fine-tuningAdaptersParameter reuse

72

Feature extraction Fine-tuningAdapters
Training time

Slow Fast

4.2.C – Optimization trade-offs: Time

73

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar
❏ Fine-tuning BERT on textual similarity tasks works significantly better
❏ Adapters achieve performance competitive with fine-tuning
❏ Anecdotally, Transformers are easier to fine-tune (less sensitive to

hyper-parameters) than LSTMs

4.2.C – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them (see more later)

74

https://arxiv.org/abs/1903.05987

4.3 – Getting more signal
The target task is often a low-resource task. We can often
improve the performance of transfer learning by
combining a diverse set of signals:

Image credit: Naveen
75

A. From fine-tuning a single model on a single adaptation task….
The Basic: fine-tuning the model with a simple classification objective

B. … to gathering signal from other datasets and related tasks …
Fine-tuning with Weak Supervision, Multi-tasking and Sequential Adaptation

C. … to ensembling models
Combining the predictions of several fine-tuned models

4.3.A – Getting more signal: Basic fine-tuning
Simple example of fine-tuning on a text
classification task:

A. Extract a single fixed-length vector from the
model:
hidden state of first/last token or mean/max of
hidden-states

B. Project to the classification space with an
additional classifier

C. Train with a classification objective

76

4.3.B – Getting more signal: Related datasets/tasks
A. Sequential adaptation

Intermediate fine-tuning on related datasets and tasks

B. Multi-task fine-tuning with related tasks
Such as NLI tasks in GLUE

C. Dataset Slicing
When the model consistently underperforms on particular slices of the data

D. Semi-supervised learning
Use unlabelled data to improve model consistency

77

4.3.B – Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more
data

78

4.3.B – Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more
data

2. Fine-tune model on target task

79

❏ Helps particularly for tasks with limited
data and similar tasks (Phang et al., 2018)

❏ Improves sample complexity on target task
(Yogatama et al., 2019)

https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1901.11373

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model jointly on related
tasks

❏ For each optimization step,
sample a task and a batch for
training.

❏ Train via multi-task learning for a
couple of epochs.

80

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model jointly on related
tasks

❏ For each optimization step,
sample a task and a batch for
training.

❏ Train via multi-task learning for a
couple of epochs.

❏ Fine-tune on the target task only
for a few epochs at the end.

81

4.3.B – Getting more signal: Multi-task fine-tuning
Fine-tune the model with an unsupervised
auxiliary task

❏ Language modelling is a related task!
❏ Fine-tuning the LM helps adapting the

pretrained parameters to the target
dataset.

❏ Helps even without pretraining (Rei et
al., ACL 2017)

❏ Can optionally anneal ratio
(Chronopoulou et al., NAACL 2019)

❏ Used as a separate step in ULMFiT

82

https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1902.10547

4.3.B – Getting more signal: Dataset slicing
Use auxiliary heads that are trained only on
particular subsets of the data

❏ Analyze errors of the model
❏ Use heuristics to automatically identify

challenging subsets of the training
data

❏ Train auxiliary heads jointly with main
head

See also Massive Multi-task Learning with
Snorkel MeTaL

83

https://dawn.cs.stanford.edu/2019/03/22/glue/
https://dawn.cs.stanford.edu/2019/03/22/glue/

4.3.B – Getting more signal: Semi-supervised learning
Can be used to make model
predictions more consistent
using unlabelled data

❏ Main idea: Minimize
distance between
predictions on original
input and perturbed
input

84

4.3.B – Getting more signal: Semi-supervised learning
Can be used to make model
predictions more consistent
using unlabelled data

❏ Perturbation can be noise,
masking (Clark et al., EMNLP
2018), data augmentation,
e.g. back-translation (Xie et
al., 2019)

85

https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848

4.3.C – Getting more signal: Ensembling
Reaching the state-of-the-art by ensembling independently fine-tuned models

❏ Ensembling models
Combining the predictions of models fine-tuned with various hyper-parameters

❏ Knowledge distillation
Distill an ensemble of fine-tuned models in a single smaller model

86

4.3.C – Getting more signal: Ensembling

Model fine-tuned...

❏ on different tasks
❏ on different dataset-splits
❏ with different parameters

(dropout, initializations…)
❏ from variant of pre-trained

models (e.g. cased/uncased)

Combining the predictions of models
fine-tuned with various hyper-parameters.

87

4.3.C – Getting more signal: Distilling

❏ knowledge distillation: train
a student model on soft
targets produced by the
teacher (the ensemble)

❏ Relative probabilities of the
teacher labels contain
information about how the
teacher generalizes

Distilling ensembles of large models back in a single model

88

Hands-on #6:
Using multi-task learning

Image credit: Chanaky
89

Hands-on: Multi-task learning
Multitasking with a classification loss +
language modeling loss.

Create two heads:
– language modeling head
– classification head

Total loss is a weighted sum of
– language modeling loss and
– classification loss

90

Hands-on: Multi-task learning

Multi-tasking helped us
improve over single-task
full-model fine-tuning!

We use a coefficient of 1.0 for the classification loss and 0.5 for the language modeling loss and
fine-tune a little longer (6 epochs instead of 3 epochs, the validation loss was still decreasing).

91

Agenda

[2] Pretraining [4] Adaptation

[6]
Open Problems

[5] Downstream

[3] What’s in a
representation?

[1] Introduction

92

#
#
#
#
#
#

5. Downstream applications
Hands-on examples

Image credit: Fahmi
93

5. Downstream applications - Hands-on examples
In this section we will explore downstream applications and practical
considerations along two orthogonal directions:

A. What are the various applications of transfer learning in NLP
Document/sequence classification, Token-level classification, Structured
prediction and Language generation

B. How to leverage several frameworks & libraries for practical applications
Tensorflow, PyTorch, Keras and third-party libraries like fast.ai, HuggingFace...

94

Practical considerationsFrameworks & libraries: practical considerations
❏ Pretraining large-scale models is costly

Use open-source models
Share your pretrained models

“Energy and Policy Considerations for Deep Learning in NLP” - Strubell, Ganesh, McCallum - ACL 2019

❏ Sharing/accessing pretrained models
❏ Hubs: Tensorflow Hub, PyTorch Hub
❏ Author released checkpoints: ex BERT, GPT...
❏ Third-party libraries: AllenNLP, fast.ai, HuggingFace

❏ Design considerations
❏ Hubs/libraries:

❏ Simple to use but can be difficult to modify model internal architecture
❏ Author released checkpoints:

❏ More difficult to use but you have full control over the model internals

95

5. Downstream applications - Hands-on examples

A. Sequence and document level classification
Hands-on: Document level classification (fast.ai)

B. Token level classification
Hands-on: Question answering (Google BERT & Tensorflow/TF Hub)

C. Language generation
Hands-on: Dialog Generation (OpenAI GPT & HuggingFace/PyTorch Hub)

Icons credits: David, Susannanova, Flatart, ProSymbols
96

5.A – Sequence & document level classification
Transfer learning for document classification using the fast.ai library.

❏ Target task:
IMDB: a binary sentiment classification dataset containing 25k highly polar
movie reviews for training, 25k for testing and additional unlabeled data.
http://ai.stanford.edu/~amaas/data/sentiment/

❏ Fast.ai has in particular:
❏ a pre-trained English model available for download
❏ a standardized data block API
❏ easy access to standard datasets like IMDB

❏ Fast.ai is based on PyTorch

97

http://ai.stanford.edu/~amaas/data/sentiment/
https://www.fast.ai/

5.A – Document level classification using fast.ai
fast.ai gives access to many high-level API out-of-the-box
for vision, text, tabular data and collaborative filtering.

DataBunch for the language model and the classifier

Load IMDB dataset & inspect it.

Load an AWD-LSTM (Merity et al., 2017) pretrained on
WikiText-103 & fine-tune it on IMDB using the language
modeling loss.

Fast.ai then comprises all the high level modules needed to
quickly setup a transfer learning experiment.

The library is designed for speed of experimentation, e.g. by
importing all necessary modules at once in interactive
computing environments, like:

98

https://github.com/fastai
https://arxiv.org/abs/1708.02182

5.A – Document level classification using fast.ai

Now we fine-tune in two steps:

Once we have a fine-tune language model
(AWD-LSTM), we can create a text classifier by adding
a classification head with:
– A layer to concatenate the final outputs of the RNN
with the maximum and average of all the intermediate
outputs (along the sequence length)
– Two blocks of nn.BatchNorm1d ⇨ nn.Dropout ⇨
nn.Linear ⇨ nn.ReLU with a hidden dimension of 50.

Colab: http://tiny.cc/NAACLTransferFastAiColab

1. train the classification head only while keeping
the language model frozen, and

2. fine-tune the whole architecture.

99

http://tiny.cc/NAACLTransferFastAiColab

5.B – Token level classification: BERT & Tensorflow
Transfer learning for token level classification: Google’s BERT in TensorFlow.

❏ Target task:
SQuAD: a question answering dataset.
https://rajpurkar.github.io/SQuAD-explorer/

❏ In this example we will directly use a Tensorflow checkpoint
❏ Example: https://github.com/google-research/bert
❏ We use the usual Tensorflow workflow: create model graph comprising

the core model and the added/modified elements
❏ Take care of variable assignments when loading the checkpoint

100

https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/google-research/bert

5.B – SQuAD with BERT & Tensorflow
Let’s adapt BERT to the target task.

Replace the pre-training head
(language modeling) with a
classification head:
a linear projection layer to
estimate 2 probabilities for
each token:
– being the start of an answer
– being the end of an answer.

Keep our core model unchanged.

101

5.B – SQuAD with BERT & Tensorflow

Load our pretrained checkpoint

To load our checkpoint, we just
need to setup an
assignement_map from the
variables of the checkpoint to
the model variable, keeping only
the variables in the model.

And we can use
tf.train.init_from_ckeckpoint

102

5.B – SQuAD with BERT & Tensorflow
TensorFlow-Hub

TensorFlow Hub is a library
for sharing machine learning
models as self-contained
pieces of TensorFlow graph
with their weights and assets.

Working directly with TensorFlow
requires to have access to–and
include in your code– the full
code of the pretrained model.

Modules are automatically
downloaded and cached when
instantiated.

Each time a module m is called
e.g. y = m(x), it adds operations
to the current TensorFlow graph
to compute y from x.

103

5.B – SQuAD with BERT & Tensorflow
Tensorflow Hub host a nice selection of pretrained models for NLP

104

Tensorflow Hub can also used with Keras exactly how we saw in the BERT example

The main limitations of Hubs are:
❏ No access to the source code of the model (black-box)
❏ Not possible to modify the internals of the model (e.g. to add Adapters)

5.C – Language Generation: OpenAI GPT & PyTorch
Transfer learning for language generation: OpenAI GPT and HuggingFace library.

❏ Target task:
ConvAI2 – The 2nd Conversational Intelligence Challenge for training and
evaluating models for non-goal-oriented dialogue systems, i.e. chit-chat
http://convai.io

❏ HuggingFace library of pretrained models
❏ a repository of large scale pre-trained models with BERT, GPT, GPT-2, Transformer-XL
❏ provide an easy way to download, instantiate and train pre-trained models in PyTorch

❏ HuggingFace’s models are now also accessible using PyTorch Hub

105

http://convai.io

5.C – Chit-chat with OpenAI GPT & PyTorch

A dialog generation task:

Language generation tasks are close to the language modeling pre-training objective, but:
❏ Language modeling pre-training involves a single input: a sequence of words.
❏ In a dialog setting: several type of contexts are provided to generate an output sequence:

❏ knowledge base: persona sentences,
❏ history of the dialog: at least the last utterance from the user,
❏ tokens of the output sequence that have already been generated.

How should we adapt the model?

106

5.C – Chit-chat with OpenAI GPT & PyTorch

Golovanov, Kurbanov, Nikolenko, Truskovskyi, Tselousov and Wolf, ACL 2019

Several options:
❏ Duplicate the model to initialize an encoder-decoder structure

e.g. Lample & Conneau, 2019
❏ Use a single model with concatenated inputs

see e.g. Wolf et al., 2019, Khandelwal et al. 2019

Concatenate the various context separated by delimiters and add position and segment embeddings

107

https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1905.08836

5.C – Chit-chat with OpenAI GPT & PyTorch
Let’s import pretrained versions of OpenAI
GPT tokenizer and model.

Now most of the work is about preparing the
inputs for the model.

Then train our model using the pretraining
language modeling objective.

And add a few new tokens to the vocabulary

We organize the contexts in segments

Add delimiter at the extremities of the segments

And build our word, position and segment inputs
for the model.

108

5.C – Chit-chat with OpenAI GPT & PyTorch
PyTorch Hub
Last Friday, the PyTorch team soft-launched a beta version of PyTorch Hub. Let’s have a quick look.
❏ PyTorch Hub is based on GitHub repositories
❏ A model is shared by adding a hubconf.py script to the root of a GitHub repository
❏ Both model definitions and pre-trained weights can be shared
❏ More details: https://pytorch.org/hub and https://pytorch.org/docs/stable/hub.html

In our case, to use torch.hub instead of pytorch-pretrained-bert, we can simply call torch.hub.load
with the path to pytorch-pretrained-bert GitHub repository:

PyTorch Hub will fetch the model from the master branch on GitHub. This means that you don’t
need to package your model (pip) & users will always access the most recent version (master).

109

https://pytorch.org/hub
https://pytorch.org/docs/stable/hub.html

That’s all for this time

Image credit: Andrejs Kirma
110

