Transfer Learning in NLP
NLPL Winter School

Thomas Wolf - HuggingFace Inc.

Overview

1 Session 1: Transfer Learning - Pretraining and representations
[0 Session 2: Transfer Learning - Adaptation and downstream tasks
A Session 3: Transfer Learning - Limitations, open-questions, future directions

Many slides are adapted from a Tutorial on
Transfer Learning in NLP | gave at NAACL
291 9 with my amazing collaborators

5 s

Sebastian Matthew Swabha
Ruder Peters Swayamdipta

Transfer Learning in NLP
NLPL Winter School
Session 2

Transfer Learning in NLP

Follow along with the tutorial:

[Colab: https://tinyurl.com/NAACLTransferColab
A Code: https://tinyurl.com/NAACLTransferCode

https://tinyurl.com/NAACLTransferColab
https://tinyurl.com/NAACLTransferCode

E A e

[1] Introduction [2] Pretraining [4] Adaptation [5] Downstream

! l

Q g

[3] What's in a [6]
representation? Open Problems

#
#
#
#
#
#

4. Adaptation)

Image credit: Ben Didier

4 — How to adapt the pretrained model

Several orthogonal directions we can make decisions on:

1. Architectural modifications?
How much to change the pretrained model architecture for adaptation

2. Optimization schemes?
Which weights to train during adaptation and following what schedule

3. More signal: Weak supervision, Multi-tasking & Ensembling
How to get more supervision signal for the target task

4.1 — Architecture
A

* A
A. Keep pretrained model internals unchanged.:
Add classifiers on top, embeddings at the bottom, use outputs as features

Two general options:

B. Modify pretrained model internal architecture:
Initialize encoder-decoders, task-specific modifications, adapters

8

Image credit: Darmawansyah

4.1.A — Architecture: Keep model unchanged

General workflow:

e o o T
1. Remove pretraining task head if not useful for 7 [0 00
target task i 1 i 1
a. Example: remove softmax classifier from pretrained L
LM i A A A
b. Not always needed: some adaptation schemes : : : :
re-use the pretraining objective/task, e.g. for L,

multi-task learning I I I |

4.1.A — Architecture: Keep model unchanged

Task-specific, randomly initialized
General workflow:

llee @©o--@0 @O

T T T

A

2. Add target task-specific layers on

top/bottom of pretrained model |
a. Simple: adding linear layer(s) on top of L,
A

the pretrained model
General, /L1
pretrained T I T I

10

4.1.A — Architecture: Keep model unchanged

()
General workflow: L ’
2. Add target task-specific layers on I — — —
top/bottom of pretrained model " - _ _ —
a. Simple: adding linear layer(s) on top of - : |
the pretrained model L, (@@ D@ (X (X
b. More complex: model output as input for : T T T T g
a separate model
c. Often beneficial when target task requires E [. ® LU UL ® .]
interactions that are not available in 1 1 1

pretrained embedding

1

4.1.B — Architecture: Modifying model internals

Various reasons:
1. Adapting to a structurally different target

task

a. Ex: Pretraining with a single input sequence (ex: o0 @000 @0
language modeling) but adapting to a task with T]]]
several input sequences (ex: translation, conditional
generation...) .

b. Use the pretrained model weights to initialize as : ’ ’ :
much as possible of a structurally different target |
task model T T] T T T T T :

c. Ex:Use monolingual LMs to initialize encoder and E (0 |
decoder parameters for MT (

;)

L

12

https://arxiv.org/abs/1611.02683
https://arxiv.org/abs/1611.02683
http://arxiv.org/abs/1901.07291

4.1.B — Architecture: Modifying model internals

Various reasons:

2. Task-specific modifications
a. Provide pretrained model with capabilities that
are useful for the target task
b. Ex: Adding skip/residual connections, attention

()

X o:-co al
I I A R T T |
15 - O -0 &

13

https://arxiv.org/abs/1611.02683

4.1.B — Architecture: Modifying model internals

Various reasons:

3. Using less parameters for

adaptation:
a. Less parameters to fine-tune
b. Can be very useful given the increasing
size of model parameters
c. Ex: add bottleneck modules (“adapters”)
between the layers of the pretrained
model (;

)

llee @o--@0 @9

T A
L,
A A A A A

. CHCETDD
] T | T

14

https://arxiv.org/abs/1705.08045
https://arxiv.org/abs/1803.10082
https://arxiv.org/abs/1803.10082

4.1.B — Architecture: Modifying model internals
Adapters

d Commonly connected with a residual

connection in parallel to an existing 7 [COBSCOEERCIORSNCT)
T T T L X

layer
d Most effective when placed at every L,
layer (smaller effect at bottom layers) . A A A

O Different operations (convolutions, : : : :
self-attention) possible L,

A Particularly suitable for modular] | | | A

architectures like Transformers E
(;

15

Image credit: Caique Lima

https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

Adapters (

4.1.B — Architecture: Modifying model internals

N ee ©0- 00 OO
LN,
SA

)

Multi-head attention (MH; shared
across layers) is used in parallel
with self-attention (SA) layer of

BERT LN,
Both are added together and fed] !] T
into a layer-norm (LN)

SA,

| | | |
6 oo-00 &

| | |]
5 - @

MH,

MH;

16

https://arxiv.org/abs/1902.02671
https://arxiv.org/abs/1902.02671

Hands-on #2:
Adapting our pretrained model

17

Image credit: Chanaky

Hands-on: Model adaptation &

Let's see how a simple fine-tuning scheme can be implemented with our pretrained model:
d Plan

A Start from our Transformer language model
A Adapt the model to a target task:
A keep the model core unchanged, load the pretrained weights
A add a linear layer on top, newly initialized
A use additional embeddings at the bottom, newly initialized
d Reminder — material is here:
d Colab http://tiny.cc/NAACLTransferColab = code of the following slides
A Code http://tiny.cc/NAACLTransferCode = same code in arepo

18

http://tiny.cc/NAACLTransferColab
http://tiny.cc/NAACLTransferCode

Hands-on: Model adaptation &

Adaptation task
d We select a text classification task as the downstream task

[TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002)

 TREC consists of open-domain, fact-based questions divided into broad semantic categories contains
5500 labeled training questions & 500 testing questions with 6 labels:
NUM, LOC, HUM, DESC, ENTY, ABBR

Ex:
% How did serfdom develop in and then leave Russia ? —> DESC
% What films featured the character Popeye Doyle ? —> ENTY
Model Test
& CoVe (McCann et al., 2017) 4.2 Transfer |earning models
C) TBCNN (Mou et al., 2015) 4.0 shine on this type of
~ LSTM-CNN (Zhou et al., 2016) 3.9 |ow-resource task
= ULMFiT (ours) 3.6

(Howard and Ruder, ACL 20189

https://aclweb.org/anthology/C02-1150
https://arxiv.org/abs/1801.06146

d Modifications:

Hands-on: Model adaptation &

First adaptation scheme

Classification Start Text Extract J—» Transformer > Linear

A Keep model internals unchanged
A Add alinear layer on top
A Add an additional embedding (classification token) at the bottom

[Computation flow:

3
3
a

Model input: the tokenized question with a classification token at the end
Extract the last hidden-state associated to the classification token

Pass the hidden-state in a linear layer and softmax to obtain class
probabilities

(Radford et al., 20%3)

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Fine-tuning hyper-parameters:

° AdaptationConfig = namedtuple('AdaptationConfig', :
. field names="num classes, dropout, initializer_range, batch_size, lr, max_norm, n_epochs,"
- 6 Classes N TREC-6 e "n_warmup, valid_set_prop, gradient_accumulation_steps, device,"
"log_dir, dataset_cache")
. adapt_args = AdaptationConfig(
— Use fine tuning hyper parameters ” 0, 0.02 , 16 , 6.5e-5, 1.0, 3,
10 0.1 , 1, "cuda" if torch.cuda.is_available() else "cpu",
from Radford et al., 2018: s e Gaohe
e learning rate from 6.5e-510 0.0
import random :
[] ﬁne'tune fOI' 3 epOChS ° from torch.utils.data import TensorDataset, random split

dataset_file = cached_path("https://s3.amazonaws.com/datasets.huggingface.co/trec/"

) "trec-tokenized-bert.bin")
Let's load and prepare our dataset: datasets = torch.load(dataset_file)
- trim to the transformer input size & for split _name in ['train’, 'test']:
add a CIaSSIﬁcatlon tOken at the end # Trim the s;mples to the transformer's inpl}t'length minus 1 & add a c1a§sific?.tion token
datasets[split_name] = [x[:arg§.num_max_pos.lt}ons—l] + [tokenizer.vocab['[CLS]']]
Of eaCh Sample, for x in datasets[split_name]]

- pad 'to 'the Ief‘t # Pad the dataset to max length
4 padding_length = max(len(x) for x in datasets[split_name])
- convert to tensors’ datasets[split_name] = [x + [tokenizer.vocab['[PAD]']] * (padding_length - len(x))

for x in datasets[split_name]]
- extract a validation set.

Convert to torch.Tensor and gather inputs and labels
tensor = torch.tensor(datasets[split_name], dtype=torch.long)

P " labels = torch.tensor(datasets[split_name + '_labels'], dtype=torch.long)
| love | Mom S cooklng [CLS] datasets[split_name] = TensorDataset(tensor, labels)
I Iove you too ! [CLS] # Create a validation dataset from a fraction of the training dataset
valid_size = int(adapt_args.valid set_prop * len(datasets['train']))
NO Way [CLS] train size = len(datasets['train']) - valid _size
This is the | one |[CLS] valid dataset, train dataset = random split(datasets['train'], [valid size, train size])
Yes |[CLS] train_loader = Dataloader(train dataset, batch_size=adapt args.batch_size, shuffle=True)

valid_loader = DatalLoader(valid_dataset, batch_size=adapt_args.batch_size, shuffle=False) d
test_loader = DataLoader(datasets['test'], batch_size=adapt_args.batch size, shuffle=False)

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Adapt our model architecture

° class TransformerWithClfHead(nn.Module): 5
def _ init (self, config, fine_tuning config):
super()._ init ()

1 self.config = fine_tuning_config
Keep Our pretralned mOdel self.transformer = Transformer(config.embed dim, config.hidden_dim, config.num embeddings,

b config.num max positions, config.num heads, config.num_layers,

u n C h a n g ed a S th e baCkbo n e . fine_tuning config.dropout, causal=not config.mlm)

self.classification_head = nn.Linear(config.embed dim, fine tuning config.num classes)]

Replace the pre-training head self.apply(self.init veights)
(language mOdeIing) With the B iIflizggfxiggﬁzé?:\ig\alz?dl(l}xiTI:..inear, nn.Embedding, nn.LayerNorm)):

module.weight.data.normal_ (mean=0.0, std=self.config.initializer_range)

CIaSSlﬁcation head_ if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:

module.bias.data.zero_()

A Ilnear Iayei; WhiCh takes aS def fc_)rward(self, f’ clf_ tokens_mask, clf_lal:';els=None, padding_mask=None) :
Input the hldden-State Of the hidden_states = self.transformer(x, padding mask)

clf tokens_states = (hidden states * clf_ tokens_mask.unsqueeze(-1).float()).sum(dim=0)

[CLF] token (using a mask) clf logits = self.classification_head(clf_tokens_states)

if clf_labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(clf_ logits.view(-1, clf logits.size(-1)), clf_labels.view(-1))
return clf logits, loss

return clf logits

* 141 1 1 f # If you have pretrained a model in the first section, you can use its weigths :
Initialize all the weights o B '

the |||Ode|. # Otherwise, just load pretrained model weigths (and reload the training config as well)
% state_dict = torch.load(cached_path("https://s3.amazonaws.com/models.huggingface.co/"
mm 1 "naacl-2019-tutorial/model_checkpoint.pth"), map_ location='cpu')
Reload CO on Welghts args = torch.load(cached_path("https://s3.amazonaws.com/models.huggingface.co/"

"naacl-2019-tutorial/model_training args.bin"))

from the pretrained model.

adaptation_model = TransformerWithClfHead(config=args, fine_tuning_config=adapt_args).to(adapt_args.device)

incompatible keys = adaptation_model.load state_dict(state_dict, strict=False)
print(f"Parameters discarded from the pretrained model: {incompatible_ keys.unexpected keys}")
print(f"Parameters added in the adaptation model: {incompatible_keys.missing_keys}")

[> Parameters discarded from the pretrained model: ['lm_head.weight'] 22
Parameters added in the adaptation model: ['classification head.weight', 'classification_head.bias']

Hands-on: Model adaptation

. . ° pptimizer = torch.optim.Adam(adaptation_model.parameters(), lr=adapt_args.lr) H
Our fine-tuning code: '

g r # Training function and trainer 1
. .. def update(engine, batch):

adaptation model.train()

A SImple tralnlng update batch, labels = (t.to(adapt_args.device) for t in batch)
H . inputs = batch.transpose(0, 1).contiguous() # to shape [seqg length, batch]
fU nCtlon —_— _+ loss = adaptation_model(inputs, clf_tokens_mask=(inputs == tokenizer.vocab['[CLS]']), clf_ labels=labels,
padding_mask=(batch == tokenizer.vocab['[PAD]']))

* prepare Inpu‘ts.‘ transpose loss = loss / adapt_args.gradient_accumulation_steps

loss.backward()

and bUIld Da ddina & torch.nn.utils.clip_grad_norm (adaptation_model.parameters(), adapt_args.max_ norm)

if engine.state.iteration % adapt_args.gradient accumulation steps == 0:
optimizer.step()

classification token masks optimizer.zero_grad()

return loss.item()

* we have options to clip and el v

. # Evaluation function and evaluator (evaluator output is the input of the metrics)
accumulate gradients def inference(engine, batch):

adaptation_model.eval()
. with torch.no_grad():
batch, labels = (t.to(adapt_args.device) for t in batch)
We WI” evaluate On Our inputé = batch.transpose(0, 1).contiguous() # to shape [seq length, batch]
H . . > clf logits = adaptation model (inputs, clf_ tokens mask=(inputs == tokenizer.vocab['[CLS]']),
validation and test sets:

padding_mask=(batch == tokenizer.vocab['[PAD]']))

return clf_ logits, labels

* validation: after each epoch evaluator = Engine(inference)

* . # Attache metric to evaluator & evaluation to trainer: evaluate on valid set after each epoch
teSt- at the end Accuracy().attach(evaluator, "accuracy")

@trainer.on(Events.EPOCH_COMPLETED)
def log_validation_results(engine):

. evaluator.run(valid_loader)
SChedUIQ. print(f"validation Epoch: {engine.state.epoch} Error rate: {100*(1 - evaluator.state.metrics['accuracy'])}")
* Ilnearly IncreaSIng to Ir # Learning rate schedule: linearly warm-up to lr and then to zero

scheduler = PiecewiseLinear(optimizer, 'lr', [(0, 0.0), (adapt_args.n_warmup, adapt_args.lr),

* Ilneafly decreas’ng to 00 A (len(train_loader)*adapt_args.n_epochs, 0.0)])

trainer.add event_handler (Events.ITERATION STARTED, scheduler)

Add progressbar with loss
RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
ProgressBar (persist=True).attach(trainer, metric_names=['loss'])

Save checkpoints and finetuning config

checkpoint_handler = ModelCheckpoint(adapt_args.log dir, 'finetuning checkpoint', save_ interval=1l, require_empty=False)
trainer.add_event_handler (Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': adaptation_model}) 23
torch.save(args, os.path.join(adapt args.log dir, 'fine tuning args.bin'))

Hands-on: Model adaptation — Results .~

We can now fine-tune our model on TREC:

[50] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

g Epoch [1/3] [307/307] 100% . |oss=3.85¢-01 [01:10<00:00]
Validation Epoch: 1 Error rate: 9.174311926605505 Model Test
Epoch [2/3] [307/307] 100%| . '0s5=1.73¢-01 [01:10<00:00] - CoVe (McCann et al., 2017) 4.2
Validation Epoch: 2 Error rate: 5.871559633027523) TBCNN (Mou et al., 2015) 4.0
Epoch [3/3] [307/307] 100%| . |oss=9.63¢-02 [01:10<00:00] § LSTM-CNN (Zhou et al., 2016) 3.9
Validation Epoch: 3 Error rate: 5.688073394495408 &= ULMEFiT (ours) 3.6
<ignite.engine.engine.State at 0x7ff4c8b385f8>
° ::ii:?tf:?;c;:En}(lZ:i;:Eiofdgiior rate: {100*(1.00 - evaluator.state.metrics['accuracy']):.3£f}") S We are at the State-Of-the-a rt
(ULMFiT)
[> Test Results - Error rate: 3.600
Remarks:
Q The error rate goes down quickly! After one epoch we already have >90% accuracy.
= Fine-tuning is highly data efficient in Transfer Learning
J

We took our pre-training & fine-tuning hyper-parameters straight from the literature on related models.
= Fine-tuning is often robust to the exact choice of hyper-parameters

24

Hands-on: Model adaptation — Results

100

Let's conclude this hands-on with a few

L.] 80 . %E&
additional words on robustness & variance. o b QF T : T
O Large pretrained models (e.g. BERT large) are S ol

prone to degenerate performance when fine-tuned e —

BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI

on tasks with small training sets. col MRPC muw o RE

d Observed behavior is often “on-off”: it either works . T ”f’ e e Tm ‘t"i‘“ = .-I «f» s@
very well or doesn't work at all. o § P «f - T

[Understanding the conditions and causes of this x
behavior (models, adaptation schemes) is an olommae -

open research question. oA =T wec op s mue om

100
e ’Kffr\ Sam £ —
8 X 5 ¥ % OO 4 W
Tfe=e s~ —wr,

60 ‘*I,‘

;m x X * Kx o x K
201" «‘T

x o o X Y e~

20

o

Task Score

o

(c)

Task Score

BERT BERT BERT BERT El BERT El BERT
BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI BERT-MNLI

Figure 1: Distribution of task scores across 20 random restarts for BERT, and BERT with intermediary ﬁne -tuning

on MNLI Each cross represents a single run. Error lines show mean=+1std. (a) Fine-tuned on all data, gasks

with <10k training examples. (b) Fine-tuned on no more than 5k examples for each task. (c) Fine- tun n no
Ph an q et a | 20 1 8 more than 1k examples for each task. (*) indicates that the intermediate task is the same as the target task.

https://arxiv.org/abs/1811.01088v2

4.2 — Optimization

Several directions when it comes to the optimization itself:

A.

Choose which weights we should update QE
Feature extraction, fine-tuning, adapters

Choose how and when to update the weights (O

- & =
;aee e

From top to bottom, gradual unfreezing, discriminative fine-tuning ==

Consider practical trade-offs {}{}
] : =~
Space and time complexity, performance

26

Image credit: ProSymbols, purplestudio, Markus, Alfredo

4.2 A — Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

A. Do not change pretrained weights
Feature extraction, adapters

B. Change pretrained weights
Fine-tuning

27

Image credit: purplestudio

4.2 A — Optimization: Which weights?
Don't touch the pretrained
weights!

Feature extraction:
d Weights are frozen

28

4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Feature extraction:
d Weights are frozen

[A linear classifier is trained on top of
the pretrained representations

lee @9 @0 @9

29

4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Feature extraction:

J
H

o
m

Weights are frozen

A linear classifier is trained on top of th
pretrained representations

Don't just use features of the top layer!
Learn a linear combination of layers

(:
)

(N ©0 ©0 00 @0

ENEO @0 @9
! I I

30

https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1705.08142
https://arxiv.org/abs/1705.08142

T)

Don't touch the pretrained] T T [

weights! L, [00 00) === (OC ooj

Feature extraction: g

A Alternatively, pretrained b [" o e ..J
representations are used as [T T T T

features in downstream model F | o® X @ @ 00]

4.2 A — Optimization: Which weights?
Don't touch the pretrained

weights! i ee 9000 @9

T | | T A3
Adapters L,

A Task-specific modules that are
L,

added in between existing layers
D .

KV

4.2 A — Optimization: Which weights?

Don't touch the pretrained
weights!

Adapters

A Task-specific modules that are
added in between existing layers

A Only adapters are trained

KK}

4.2 A — Optimization: Which weights?

Yes, change the pretrained weights!

, . (@0 @900 @9
Fine-tuning: T T T T

QO Pretrained weights are used as initialization L»
for parameters of the downstream model i H 4 4

1 The whole pretrained architecture is trained |
during the adaptation phase i i T i

w I
B

Hands-on #3:
Using Adapters and freezing

Image credit: Chanaky

Hands-on: Model adaptation

Second adaptation scheme: Using Adapters

PP O R —

Y
d Modifications: e |
1 Transformer

O add Adapters inside the backbone | [LQQOQOOJ | & e
model: Linear » RelLU = Linear Fedionier o —
with a skip-connection |
A As previously:
A add a linear layer on top

Nonlinearity
Layer Norm

i o &)
A use an additional embedding | Feedonvrd o
(classification token) at the bottom ! o .
: : . [00000O] | I -
We will only train the adapters, the added N T S atenton ,
linear layer and the embeddings. The other B St o

parameters of the model will be frozen.

Houlsby et al., ICML 20%%

https://arxiv.org/abs/1902.00751

Hands-on: Model adaptation

° class TransformerWithAdapter,
s_dim, embed dim, hidden_dim, num embeddings, num max positions,

Let's adapt our model architecture def _init_(selt, adeprirs d
eads, num_layers, dropout, causal):

Tansformer with adapters (small bottleneck layers)

super()._ init_ (embed_dim, hidden_dim, num embeddings, num max positions, num heads, num_layers,
dropout, causal)

self.adapters_1 = nn.ModuleList()

Inherit from our pretrained
model to have all the modules. e e a0

self.adapters_l.append(nn.Sequential (nn.Linear(embed_dim, adapters_dim),
nn.ReLU(),
nn.Linear(adapters_dim, embed dim)))

Add the adapter modules: self.adapters_z.append(nn.Sequential(2::§izgiu)rfembed_dim, adapters_dim),

. . nn.Linear (adapters_dim, embed dim
Bottleneck layers with 2 linear —— —
Iayers and a non-linear positions = torch.arange(len(x), device=x.device) .unsqueeze(-1)
activation function (ReLU) HE BT e e

h self.dropout(h)

ransformer) :

def forward(self, x, padding_mask=None):
""" x has shape [seq length, batch], padding mask has shape [batch, seq length] """

attn_mask = None

H H H H . if self.causal:
Hldden dlmenSIOn IS Sma”. attn mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
attn_mask = torch.triu(attn_mask, diagonal=1)
e.g. 32, 64, 256

for (layer_norm_ 1, attention, adapter_1, layer_norm 2, feed forward, adapter_2)\
in zip(self.layer norms_1, self.attentions, self.adapters_1,
self.layer norms_2, self.feed forwards, self.adapters 2):
= layer norm 1(h)

. . . h
The Adapters are Inserted InSIde X, = attention(h, h, h, attn mask=attn_mask, need_weights=False, key padding mask=padding_mask)
X

Sklp'COnneCtlonS after. /[= adapter_1(x) + x # Add an adapter with a skip-connection after attention module]

X
Il

= self.dropout(x)
the attention module e
d the feed-forward module h = layer_norm_2(h)

x = feed forward(h)
= self.dropout(x)

x = adapter_2(x) + x # Add an adapter with a skip-connection after feed-forward module]

h=x+h 37

coo

Hands-on: Model adaptation &

Now we need to freeze the portions of our model we don’t want to train.
We just indicate that no gradient is needed for the frozen parameters by setting

param.requires_grad to False for the frozen parameters:

° for name, param in adaptation_model.named_parameters():
if 'embeddings' not in name and 'classification’' not in name and 'adapters_1' not in name and 'adapters_2' not in name:

param.detach_ ()
param.requires_grad = False

else:
param.requires_grad = True

full parameters = sum(p.numel() for p in adaptation model.parameters())
sum(p.numel() for p in adaptation model.parameters() if p.requires_grad)

trained_parameters =

print(f"We will train {trained_parameters:3e} parameters out of {full parameters:3e},"
f" i.e. {100 * trained parameters/full_ parameters:.2f}%")

[> We will train 1.284961le+07 parameters out of 5.125265e+07, i.e. 25.07%

In our case we will train 25% of the parameters. The model is small & deep (many adapters) and we need
to train the embeddings so the ratio stay quite high. For a larger model this ratio would be a lot lower.

38

Hands-on: Model adaptation &

We use a hidden dimension of 32 for the adapters and a learning rate ten times higher for the
fine-tuning (we have added quite a lot of newly initialized parameters to train from scratch).

[185] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

> Epoch1/3] [307/307] 100% . |oss=2.04e-01 [01:00<00:00]

Validation Epoch: 1 Error rate: 9.174311926605505

poc 0ss=8.40e- 0 /<0U;
Epoch [2/3] [307/307] 100%]| I 8.40e-02 [00:57<00:00]

Validation Epoch: 2 Error rate: 7.522935779816509

Epoch [3/3] [307/307] 100% . |oss-4.83¢-02 [01:00<00:00]

Validation Epoch: 3 Error rate: 7.522935779816509
<ignite.engine.engine.State at 0x7ff4c60fd710>

° evaluator.run(test_loader)|

print(f"Test Results - Error rate: {100*(1.00 - evaluator.state.metrics['accuracy']):.3£f}")

[> Test Results - Error rate: 4.000

Results similar to full-fine-tuning case with advantage of training only 25% of the full model parameters.
For a small 50M parameters model this method is overkill = for 300M-1.5B parameters models.

39

4.2.B — Optimization: What schedule?

We have decided which weights to update, but in which order and how should be
update them?

Motivation: We want to avoid overwriting useful pretrained information and
maximize positive transfer.

Related concept: Catastrophic forgetting (McCloskey & Cohen, 1989; French,
1999)

When a model forgets the task it was originally trained on.

40

Image credit: Markus

4.2.B — Optimization: What schedule?

A guiding principle: oo @0 -0 @O
Update from top-to-bottom T i 1 T

A Progressively in time: freezing L,
A Progressively in intensity: Varying the A A A A

learning rates

A Progressively vs. the pretrained model:

Regularization |] T T

L,

\/

41

4.2.B — Optimization: Freezing

Main intuition: Training all layers at the same time 7 @0 ©0 00 @
on data of a different distribution and task may T T T T

lead to instability and poor solutions.

L,
A A A A

Solution: Train layers individually to give them
time to adapt to new task and data.

Goes back to layer-wise training of early deep
neural networks (:

)

42

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

4.2.B — Optimization: Freezing

e @000 @O

O Freezing all but the top layer (T T I I
) L,

43

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791

4.2.B — Optimization: Freezing

e @000 @O

O Freezing all but the top layer (

)
d Chain-thaw ()

training one layer at a time
1. Train new layer

44

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

T
O Freezing all but the top layer (.
)
d Chain-thaw () : :
training one layer at a time I8 | OO (@]¢

1. Train new layer

2. Train one layer at a time T T

)

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

O Freezing all but the top layer (

)
d Chain-thaw ()

training one layer at a time
1. Train new layer
2. Train one layer at a time

46

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

O Freezing all but the top layer (

)
d Chain-thaw ()

training one layer at a time
1. Train new layer
2. Train one layer at a time

47

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

llee @©o @0 @O
T T T T

O Freezing all but the top layer (

) L,
d Chain-thaw () ! ! ! !
training one layer at a time L,

1. Train new layer T T T I
2. Train one layer at a time

3. Train all layers E

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169

4.2.B — Optimization: Freezing

Freezing all but the top layer (
)
Chain-thaw ()
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

49

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization: Freezing

lee @90 ©9

Freezing all but the top layer (T T I I
> qeo oo @
Chain-thaw () H H ! H
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

50

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization: Freezing

Freezing all but the top layer (

)

Chain-thaw ()

training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

lee @90 ©9

] |]]
Neo cs-co @0

N0 ©9--©9

51

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization: Freezing

Freezing all but the top layer (
)
Chain-thaw ()
training one layer at a time
Gradually unfreezing (
): unfreeze one layer after another

T

Ln

L,

E

T T T T

11

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization: Freezing

lee @90 ©9

Freezing all but the top layer (

)
Chain-thaw () : :
training one layer at a time @9 @O
Gradually unfreezing (i i 7
): unfreeze one layer after another ¢

Sequential unfreezing (
): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs

53

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B — Optimization: Freezing

Freezing all but the top layer (
)

Chain-thaw ()
training one layer at a time
Gradually unfreezing (

): unfreeze one layer after another
Sequential unfreezing (

): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs
2. Fine-tune pretrained parameters without embedding
layer for k epochs

T

L

L,

T T T T

n
A A A A

54

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B — Optimization: Freezing

Freezing all but the top layer (
)

Chain-thaw ()
training one layer at a time
Gradually unfreezing (

): unfreeze one layer after another
Sequential unfreezing (

): hyper-parameters that

determine length of fine-tuning
1. Fine-tune additional parameters for 7 epochs
2. Fine-tune pretrained parameters without embedding
layer for k epochs
3. Train all layers until convergence

T

Ln

L,

E

T T T T

11

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

4.2.B — Optimization: Freezing

O Freezing all but the top layer (
)

d Chain-thaw ()

training one layer at a time
O Gradually unfreezing (

): unfreeze one layer after another
O Sequential unfreezing (
): hyper-parameters that
determine length of fine-tuning

Commonality: Train all parameters jointly in the
end

T

Ln

L,

E

T T T T

11

https://arxiv.org/abs/1502.02791
https://arxiv.org/abs/1502.02791
https://www.aclweb.org/anthology/D17-1169
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1902.10547
https://arxiv.org/abs/1902.10547

Hands-on #4:
Using gradual unfreezing

57

Image credit: Chanaky

Hands-on: Adaptation

Gradual unfreezing is similar to our previous freezing process.
We start by freezing all the model except the newly added parameters:

° for name, param in adaptation_model.named parameters(): :
if 'embeddings' not in name and 'classification' not in name:
param.detach_ ()
param.requires_grad = False

else:
param.requires_grad = True

full_parameters = sum(p.numel() for p in adaptation_model.parameters())
trained parameters = sum(p.numel() for p in adaptation model.parameters() if p.requires_grad)

print(f"We will start by training {trained parameters:3e} parameters out of {full parameters:3e},"
f" i.e. {100 * trained parameters/full parameters:.2f}%")

[> We will start by training 1.199579e+07 parameters out of 5.039883e+07, i.e. 23.80%

We then gradually unfreeze an additional block along the training so that we train the full model at the end:
° import re :

UnfreeZIng interval S # We will unfreeze blocks regqularly along the training: one block every “unfreezing interval™ step

unfreezing_interval = int(len(train_loader) * adapt_args.n_epochs / (args.num layers + 1))

@trainer.on(Events.ITERATION COMPLETED)
def unfreeze_ layer_if needed(engine):

H H if engine.state.iteration % unfreezing_interval == 0:
Flnd IndeX Of |ayer # Which layer should we unfreeze now
—lp- UNfreezing_index = args.num_layers - (engine.state.iteration // unfreezing_interval)
to unfreeze ‘
Let's unfreeze it

unfreezed = []

for name, param in adaptation model.named_parameters():
Name pattern :

P> if re.match(r"transformer\.["\.]*\." + str(unfreezing index) + r"\.", name):

unfreezed.append (name)

matChing param.require grad = True

print(f£"Unfreezing block {unfreezing index} with {unfreezed}")

58

Hands-on: Adaptation

Gradual unfreezing has not been investigated in details for Transformer models
= no specific hyper-parameters advocated in the literature

Residual connections may have an impact on the method
= should probably adapt LSTM hyper-parameters

[209] trainer.run(train loader, max_epochs=adapt_args.n_epochs)

B Epochlizal [307/307] 100% N, (o5 =7.56¢-02 [00:57<00:00]

Unfreezing block 15 with ['transformer.attentions.15.in_proj_weight', 'transformer.attentions.15.in proj_bias
Unfreezing block 14 with ['transformer.attentions.l4.in proj_weight', 'transformer.attentions.l4.in proj_bias
Unfreezing block 13 with ['transformer.attentions.13.in proj weight', 'transformer.attentions.13.in proj_bias
Unfreezing block 12 with ['transformer.attentions.l2.in proj weight', 'transformer.attentions.l2.in proj_bias
Unfreezing block 11 with ['transformer.attentions.ll.in proj_weight', 'transformer.attentions.ll.in_proj_bias
validation Epoch: 1 Error rate: 7.706422018348624

Epoch [2/3] [307/307] 100% [, 1055 =2.27e-02 [00:59<00:00]
Unfreezing block 10 with ['transformer.attentions.10.in proj_weight', 'transformer.attentions.10.in proj_bias
Unfreezing block 9 with ['transformer.attentions.9.in proj_weight', 'transformer.attentions.9.in proj_bias',
Unfreezing block 8 with ['transformer.attentions.8.in proj_weight', 'transformer.attentions.8.in proj_bias',
Unfreezing block 7 with ['transformer.attentions.7.in proj_weight', 'transformer.attentions.7.in proj_bias',
Unfreezing block 6 with ['transformer.attentions.6.in proj_weight', 'transformer.attentions.6.in proj_bias',
Unfreezing block 5 with ['transformer.attentions.5.in proj_weight', 'transformer.attentions.5.in proj_bias',
Validation Epoch: 2 Error rate: 6.788990825688068

Epoch [3/3] [307/3071 100% | N '0s5-=5.05e-03 [00:56<00:00]
Unfreezing block 4 with ['transformer.attentions.d.in proj_weight', 'transformer.attentions.4.in proj_bias',
Unfreezing block 3 with ['transformer.attentions.3.in proj_weight', 'transformer.attentions.3.in proj_bias',
Unfreezing block 2 with ['transformer.attentions.2.in proj_weight', 'transformer.attentions.2.in proj_bias',
Unfreezing block 1 with ['transformer.attentions.l.in proj_weight', 'transformer.attentions.l.in proj_bias',
Unfreezing block 0 with ['transformer.attentions.0.in proj_weight', 'transformer.attentions.0.in proj_bias',
Unfreezing block -1 with []
Validation Epoch: 3 Error rate: 7.339449541284404
<ignite.engine.engine.State at 0x7££4c61999e8>

[210] evaluator.run(test_loader)

print(£"Test Results - Error rate: {100%(1.00 - evaluator.state.metrics['accuracy']):.3£}")

[> Test Results - Error rate: 5.200

We show simple experiments in the Colab. Better hyper-parameters settings can probably be found.

59

4.2.B — Optimization: Learning rates

Main idea: Use lower learning rates to avoid

overwriting useful information.
lee @000 @O

Where and when? i 1
O Lower layers (capture general information) L
3 Early in training (model still needs to adapt : : : :
to target distribution) L,
O Late in training (model is close to T T
convergence)

A A A

(4)

(3)

(2)

77(1)

Y

60

4.2.B — Optimization: Learning rates

O Discriminative fine-tuning (

) (a)
T n
O Lower layers capture general information g ©9--e0 e
— Use lower learning rates for lower layers | | | |
. o .
N =nxd;’ L, n®
A A A A

2)

T T T

L,

3

T

ey

n
Y

61

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization

A Discriminative fine-tuning
O Triangular learning rates (

)

A Quickly move to a suitable region, then slowly
converge over time

. Learning rates

62

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146

4.2.B — Optimization

A Discriminative fine-tuning
O Triangular learning rates (

a

)

Quickly move to a suitable region, then slowly
converge over time
Also known as “learning rate warm-up”
Used e.g. in Transformer (

) and Transformer-based methods (BERT,
GPT)
Facilitates optimization; easier to escape
suboptimal local minima

. Learning rates

T

Ln

L,

E

T T T T

I

Nt

Nt

Nt

Nt

63

https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

4.2.B — Optimization: Regularization

Main idea: minimize catastrophic forgetting by
encouraging target model parameters to stay

close to pretrained model parameters o0 @000 9o
using a regularization term (). T T T i

L,
A A A

<>

L,
A A A A

A

NEo eo--@o 7
! | | |
T | | | |

(o2}
H~ I

4.2.B — Optimization: Regularization
A Simple method.

Regularize new parameters e @000 OO

not to deviate too much I | ! |

from pretrained ones (L, (@@ - - -
) L) <
/ j ! /

=Sl - Lill: . o < CONCCNES

f 1 ! !]]
N .

65

https://www.aclweb.org/anthology/K17-1029
https://www.aclweb.org/anthology/K17-1029

4.2.B — Optimization: Regularization

O More advanced (elastic
weight consolidation; EWC): o'

Focus on parameters 6 that 0 — A~

are important for the f’\ - _

pretrained task based on the % ’ B - S5

Fisher information matrix F'

(: — AGo eo--e0 @O
E [S

Q= Z 2F;(0. — 6:)? E'

66

https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521

4.2.B — Optimization: Regularization

EWC has downsides in continual

learning: y
O May over-constrain 0 — A~

parameters 5 Lr,z
d Computational costis linear 4 : : A A A A

T T T

in the number of tasks L Li

() | | | |

T

67

https://arxiv.org/abs/1805.06370

4.2.B — Optimization: Regularization

[If tasks are similar, we may yT

also encourage source and g o0 @0 -0 ©°
target predictions to be close !
T

based on cross-entropy, T T I

/

!

T T T T

L
similar to distillation: IMCcO ©9-©9 ¢

900 ©9--©@9

Q=H(D,7) e ©© ©9 - ©9
T T T T

Hands-on #5:
Using discriminative learning

69

Image credit: Chanaky

Hands-on: Model adaptation

Discriminative learning rate can be implemented using two steps in our example:
First we organize the parameters of the various layers in labelled parameters groups in the optimizer:

l/ . .
\J
‘°' import re :

Build parameters groups by layer, numbered from the top ['1l', '2', ..., '15']
parameter_groups = []
for i in range(args.num_layers):
name_pattern = r"transformer\.["\.]*\." + str(i) + r"\."
group = {'name': str(args.num layers - i),
'params': [p for n, p in adaptation_model.named_parameters() if re.match(name_pattern, n)]}
parameter groups.append(group)

Add the rest of the parameters (embeddings and classification layer) in a group labeled '0'
name_pattern = r"transformer\.[”\.]*\.\d*\."
group = {'name': '0',

'params': [p for n, p in adaptation_model.named parameters() if not re.match(name_pattern, n)]}
parameter_groups.append(group)

Sanity check that we still have the same number of parameters
assert sum(p.numel() for g in parameter groups for p in g['params'])\
== sum(p.numel() for p in adaptation_model.parameters())

optimizer = torch.optim.Adam(parameter groups, lr=adapt args.lr)

We can then compute the learning rate of each group depending on its label (at each training iteration):

eoe

—1
?7?/ f— /]7 X df ° @trainer.on(Events.ITERATION_STARTED)
def update_layer_ learning rates(engine):
for param group in optimizer.param groups:
layer_index = int(param_group|["name"])
Hypel’-parametel’ param_group["lr"] = param group["lr"] / (adapt_args.decreasing factor ** layer_index)

70

4.2.C — Optimization: Trade-offs

Several trade-offs when choosing which weights to update: 3

A. Space complexity

Task-specific modifications, additional parameters, parameter reuse

B. Time complexity
Training time

C. Performance

71

Image credit: Alfredo

4.2.C — Optimization trade-offs: Space

Task-specific modifications

Feature extraction Adapters Fine-tuning
< >
Many Few
Additional Feature extraction Adapters Fine-tuning
< >
parameters
Many Few
Pararneter reuse Feature e:tractlon Adapters Fine-tuning _

All

None

72

4.2.C — Optimization trade-offs: Time

Training time :
J Feature extraction Adapters

Fine-tuning

>

-

Slow

Fast

73

4.2.C — Optimization trade-offs: Performance

Rule of thumb: If task source and target tasks are dissimilar®, use feature
extraction ()

Otherwise, feature extraction and fine-tuning often perform similar
Fine-tuning BERT on textual similarity tasks works significantly better
Adapters achieve performance competitive with fine-tuning

Anecdotally, Transformers are easier to fine-tune (less sensitive to
hyper-parameters) than LSTMs

L

R My Ny

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them (see more later)

74

https://arxiv.org/abs/1903.05987

4.3 — Getting more signal

The target task is often a low-resource task. We can often (())
improve the performance of transfer learning by

combining a diverse set of signals:
A. From fine-tuning a single model on a single adaptation task....

The Basic: fine-tuning the model with a simple classification objective

B. .. to gathering signal from other datasets and related tasks ...
Fine-tuning with Weak Supervision, Multi-tasking and Sequential Adaptation

C. ..toensembling models

Combining the predictions of several fine-tuned models

75

Image credit: Naveen

4.3.A — Getting more signal: Basic fine-tuning

Simple example of fine-tuning on a text =0,y

classification task: T

A. Extract a single fixed-length vector from the 7 [UDESRCIESICIRNCT)

model: hi

y)
hidden state of first/last token or mean/max of
hidden-states Ln
A A

A A
[]

B. Project to the classification space with an ' ' ' '
’ > L,

additional classifier

T | T T
C. Train with a classification objective E

4.3.B — Getting more signal: Related datasets/tasks

A. Sequential adaptation
Intermediate fine-tuning on related datasets and tasks

B. Multi-task fine-tuning with related tasks
Such as NLI tasks in GLUE

C. Dataset Slicing

When the model consistently underperforms on particular slices of the data

D. Semi-supervised learning
Use unlabelled data to improve model consistency

77

4.3.B — Getting more signal: Sequential adaptation

Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more 1)7 [(CORSCDOREICORNC D)

data T T i i
Neo o0 am
;
T T T T
:

4.3.B — Getting more signal: Sequential adaptation
Fine-tuning on related high-resource dataset

1. Fine-tune model on related task with more 2)T

data
2. Fine-tune model on target task

[Helps particularly for tasks with limited
data and similar tasks ()
A Improves sample complexity on target task

()

79

https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1901.11373

4.3.B — Getting more signal: Multi-task fine-tuning

Fine-tune the model jointly on related ﬁ ﬁl -I— Lz F £3
tasks ® o coied eon

[For each optimization step,
sample a task and a batch for L,
training. A A A A
[Train via multi-task learning for a : : : :
couple of epochs. L,

T T T
:

T

4.3.B — Getting more signal: Multi-task fine-tuning

Fine-tune the model jointly on related
tasks

[For each optimization step,
sample a task and a batch for
training.

[Train via multi-task learning for a
couple of epochs.

d Fine-tune on the target task only
for a few epochs at the end.

81

4.3.B — Getting more signal: Multi-task fine-tuning
Fine-tune the model with an unsupervised L=L1+ \o

auxiliary task
Ty, T5
A Language modelling is a related task! T T

3 Fine-tuning the LM helps adapting the L
pretrained parameters to the target A " A A

dataset. : : : :
3 Helps even without pretraining (L,
)
O Can optionally anneal ratio A T T T T

(YA CO ©O - ©O

A Used as a separate step in ULMFIT

82

https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1704.07156
https://arxiv.org/abs/1902.10547

4.3.B — Getting more signal: Dataset slicing

Use auxiliary heads that are trained only on _
particular subsets of the data L=L 1+ ‘62 + ‘C3

T1_3 @ @On e
[Analyze errors of the model
A Use heuristics to automatically identify L,
challenging subsets of the training : : : :
data : : : :
d Train auxiliary heads jointly with main L,
head I I I I

See also I8 CO

83

https://dawn.cs.stanford.edu/2019/03/22/glue/
https://dawn.cs.stanford.edu/2019/03/22/glue/

4.3.B — Getting more signal: Semi-supervised learning

Can be used to make model
predictions more consistent
using unlabelled data

A Main idea: Minimize
distance between
predictions on original
input 2z and perturbed
input x!

Y
_ / T

Y

t

@ @o--00 ©9

T
| |
G0 ©9--00 @9
A
Ll

| |
@9 - @9
©9 - 60

| |

@l®)
| |
:

1
i

T

L

L,

E

n

@ @o--@® @9

T T T T

A

11

I

33,

4.3.B — Getting more signal: Semi-supervised learning

Can be used to make model
predictions more consistent
using unlabelled data

A Perturbation can be noise,
masking (
), data augmentation,
e.g. back-translation (

)

Y
_ / T

Y

e @000 @9

I—)

L1 1 1 I e

00 ©9--©@9
A A A A

Ao ©o--o0
L

I

1
i

T

L,

E

@ @o--@® @9

T T T T

A

11

/

XL

https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1809.08370
https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1904.12848

4.3.C — Getting more signal: Ensembling

Reaching the state-of-the-art by ensembling independently fine-tuned models

d Ensembling models
Combining the predictions of models fine-tuned with various hyper-parameters

1 Knowledge distillation
Distill an ensemble of fine-tuned models in a single smaller model

86

4.3.C — Getting more signal: Ensembling

Combining the predictions of models
fine-tuned with various hyper-parameters.

Qlc|z) = anT([Ql,Qz,Q?’])

Q' (c| =)

Model fine-tuned...

—_
—_—

[ondifferent tasks

[on different dataset-splits

3 with different parameters
(dropout, initializations...)

A from variant of pre-trained
models (e.g. cased/uncased)

—

=

-8

£

o
© md @

8
o |
E
g

8 8
8 8

— H

—_
—_—

M00 (0909

O
[

S pd €

)
I

87

4.3.C — Getting more signal: Distilling

Distilling ensembles of large models back in a single model ars
1 knowledge distillation: train 1 A2 A3 /
Qc|) = avg([Q", Q% Q"))
a student model on soft
targets produced by the
teacher (the ensemble)

~ 370l | X) log(P (¢ | X))

a Fgelative probabilities of the
teacher labels contain
information about how the
teacher generalizes

D | b
:

)

h

88

Hands-on #6:
Using multi-task learning

89

Image credit: Chanaky

Hands-on: Multi-task learning

class TransformerWithClfHeadAndLMHead (nn.Module):

Multitasking with a classification loss + def _init_(self, config, fine tuning contig):

super()._ init ()
self.config = fine_tuning config

Ianguage ”IOdellng IOSS self.transformer = Transformer(config.embed dim, config.hidden_dim, config.num embeddings,
config.num max positions, config.num heads, config.num layers,
config.dropout, causal=not config.mlm)

Create tWO heads: self.lm head = nn.Linear(config.embed dim, config.num embeddings, bias=False)

. self.classification_head = nn.Linear(config.embed dim, fine_ tuning config.num classes)
- language modeling head
— classification head

self.apply(self.init weights)
self.tie_weights()

def tie_weights(self):
self.lm head.weight = self.transformer.tokens_embeddings.weight

def init weights(self, module):

Total |OSS iS a weighted sum Of if isinstance(module, (nn.Linear, nn.Embedding, nn.LayerNorm)):

module.weight.data.normal_(mean=0.0, std=self.config.initializer_ range)

— I d |' I d if isinstance(module, (nn.Linear, nn.LayerNorm)) and module.bias is not None:
anguage |||0 e Ing OSS an module.bias.data.zero_()
—_— ClaSSiﬂcation IOSS def forward(self, x, clf_tokens_mask, lm_labels=None, clf_labels=None, padding mask=None):
""" x and clf_tokens_mask have shape [seq length, batch] padding_mask has shape [batch, seq length]
hidden_states = self.transformer(x, padding mask)

won

def update(engine, batch):
adaptation_model.train()
batch, labels = (t.to(adapt args.device) foy/t in batch)
inputs = batch.transpose(0, 1).contiguous # to shape [seq length, batch]

1m_logits = self.lm_head(hidden_states)
clf_tokens_states = (hidden_states * clf_tokens_mask.unsqueeze(-1).float()).sum(dim=0)
clf_logits = self.classification_head(clf_tokens_states)

loss = []
if clf_labels is not None:
loss_fct = nn.CrossEntropylLoss(ignore_index=-1)
loss.append(loss_fct(clf logits.view(-1, clf logits.size(-1)), clf_labels.view(-1)))

_+ losses = adaptation_model(inputs,
clf_tokens_mask=(inputs == tokenizer.vocab['[CLS]']),
clf labels=labels,
1m_labels=inputs,
padding_mask=(batch == tokenizer.vocab['[PAD]']))

if 1m_labels is not None:

shift_logits = 1lm logits[:-1] if self.transformer.causal else lm logits
shift_labels = lm labels[1l:] if self.transformer.causal else 1lm_labels
loss_fct = nn.CrossEntropylLoss(ignore_index=-1)

clf loss, 1lm_loss = losses
loss = (adapt_args.clf_ loss_coef * clf_loss
+ adapt_args.lm loss_coef * Im loss) / adapt_args.gradient_accumulation_steps

loss.append(loss_fct(shift_logits.view(-1, shift logits.size(-1)), shift_labels.view(-1)))
loss.backward()
torch.nn.utils.clip grad norm_ (adaptation model.parameters(), adapt_args.max norm) if len(loss):
if engine.state.iteration % adapt_args.gradient_accumulation steps == 0: return (lm_logits, clf_ logits), loss
optimizer.step()
optimizer.zero_grad() return lm_logits, clf logits

return loss.item()

90

Hands-on: Multi-task learning

We use a coefficient of 1.0 for the classification loss and 0.5 for the language modeling loss and
fine-tune a little longer (6 epochs instead of 3 epochs, the validation loss was still decreasing).

[] trainer.run(train_loader, max_epochs=adapt_args.n_epochs)

> Epoch[1/6] [307/307] 100% |, o<s=1.07e+00 [01:21<00:00]
Validation Epoch: 1 Error rate: 9.35779816513761
Epoch [2/6] [3077307] 100% | . |oss-7.08e-01 [01:21<00:00]
Validation Epoch: 2 Error rate: 7.522935779816509
Epoch [3/6] [307/307] 100%| . |o<s=5.46¢-01 [01:22<00:00]
Validation Epoch: 3 Error rate: 5.688073394495408
Epoch [4/6] [307/307] 100% | oss=4.66e-01 [01:21<00:00]
Validation Epoch: 4 Error rate: 5.321100917431187 Multi-taSking helped us
Epoch [5/6] [307/307] 100% N (oss=4.22¢-01 [01:21<00:00] improve over Singl e-task
Validation Epoch: 5 Error rate: 5.688073394495408 .
Epoch [6/6] [307/307] 100% |, |o<s=3.98e-01 [01:21<00:00] fuII-mOdeI ﬂne-tunlng!

Validation Epoch: 6 Error rate: 5.321100917431187
<ignite.engine.engine.State at 0x7ff4c9357e80>

° evaluator.run(test_loader) 5
print(f"Test Results - Error rate: {10Q* = evaluator.state.metrics['accuracy']):.3f}"_u

[> Test Results Error rate: 3.400

91

Agenda

E A° Y

[1] Introduction [2] Pretraining [4] Adaptation [5] Downstream

!

Q g

[3] What's in a [6]
representation? Open Problems

92

#
#
#
#
#
#

5. Downstream applications
Hands-on examples

¥

93
dit: Fahmi

5. Downstream applications - Hands-on examples

In this section we will explore downstream applications and practical
considerations along two orthogonal directions:

A.

What are the various applications of transfer learning in NLP
Document/sequence classification, Token-level classification, Structured
prediction and Language generation

How to leverage several frameworks & libraries for practical applications

Tensorflow, PyTorch, Keras and third-party libraries like fast.ai, HuggingFace...

94

Frameworks & libraries: practical considerations

Pretraining large-scale models is costly

Consumption CO2ze (Ibs)

Use open-source models Air travel, 1 passenger, NY<>SF 1984

Share your pretrained models Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Sharing/accessing pretrained models Car, avg incl. fuel, 1 lifetime 126,000
A Hubs: Tensorflow Hub, PyTorch Hub o

QO Author released checkpoints: ex BERT, GPT... 'ng*‘T‘Z‘;i %n;::;za — =

A Third-party libraries: AllenNLP, fast.ai, HuggingFace il g & experirgnintition 33,486

Design considerations Transformer (large) 121

w/ neural architecture search 394,863

A Hubsl/libraries:

A Simple to use but can be difficult to modify model internal architecture
4 Author released checkpoints:

4 More difficult to use but you have full control over the model internals

95
“Energy and Policy Considerations for Deep Learning in NLP” - Strubell, Ganesh, McCallum - ACL 2019

5. Downstream applications - Hands-on examples

Sequence and document level classification _L
Hands-on: Document level classification (fast.ai) =

Token level classification
Hands-on: Question answering (Google BERT & Tensorflow/TF Hub)

Al

Language generation D
Hands-on: Dialog Generation (OpenAl GPT & HuggingFace/PyTorch Hub) &

96
Icons credits: David, Susannanova, Flatart, ProSymbols

5.A - Sequence & document level classification [=

Transfer learning for document classification using the fast.ai library.

A Target task:

IMDB: a binary sentiment classification dataset containing 25k highly polar
movie reviews for training, 25k for testing and additional unlabeled data.

N has in particular:

A a pre-trained English model available for download
A a standardized data block API
A easy access to standard datasets like IMDB

1 Fast.aiis based on PyTorch

97

http://ai.stanford.edu/~amaas/data/sentiment/
https://www.fast.ai/

5.A — Document level classification using fast.ai

fast.ai gives access to many high-level API out-of-the-box

° path = untar_data(URLs.IMDB_SAMPLE)

for vision, text, tabular data and collaborative filtering. .
df.head()
The library is designed for speed of experimentation, e.g. by e pech: /root/.fastai/dara/indy senrie N
importing all necessary modules at once in interactive o recat o , :
. . . negative Un-bleeping-believable! Meg Ryan doesn't even ... False
CompUtIng enVIronmentSl |Ike 1 positive This is a extremely well-made film. The acting... False
2 negative Every once in a long while a movie will come a... False
° from fastai.text import * # Quick access to NLP functionality 3 positive Name just says it all. | watched this movie wi... False
4 negative This movie succeeds at being one of the most u... False

Fast.ai then comprises all the high level modules needed to
quickly Setup a transfer |earning experiment. ° data_lm = TextLMDataBunch.from csv(path, 'texts.csv')

data_clas = TextClasDataBunch.from csv(path, 'texts.csv',
Load IMDB dataset & inspect it.

DataBunch for the language model and the classifier | [N ——

learn.unfreeze()
learn.fit_one_cycle(4, slice(le-2), moms=moms)
learn.save_encoder('enc')

Load an AWD-LSTM (Merity et al., 2017) pretrained on
WikiText-103 & fine-tune it on IMDB using the language ——# = et trainioss validioss accuracy tine
modeling IOSS 0 4.723435 3.968737 0.283498 00:15

1 4.416326 3.874095 0.286878 00:15

2 4.148463 3.836543 0.290434 00:16

3 3.951989 3.828021 0.291311 00:16

vocab=data_lm.train_ds.vocab, bs=42)

98

https://github.com/fastai
https://arxiv.org/abs/1708.02182

5.A — Document level classification using fast.ai [

Once we have a fine-tune language model e N e
(AWD-LSTM), we can create a text classifier by adding learn. £it_one_cycle(4, moms=moms)
a classification head with: o . . .

epoch train_loss valid_loss accuracy time

— A layer to concatenate the final outputs of the RNN
with the maximum and average of all the intermediate
outputs (along the sequence length)

— Two blocks of nn.BatchNorm1d = nn.Dropout =
nn.Linear » nn.RelLU with a hidden dimension of 50.

0 0.663383 0.682115 0.572139 00:10
1 0.623683 0.609520 0.651741 00:10
2 0.597989 0.582999 0.666667 00:10

3 0.580533 0.555404 0.666667 00:09

Now we fine-tune in two steps: © lcern.unfreeze()

learn.fit one_cycle(8, slice(le-5,1le-3), moms=moms)
1. train the classification head only while keeping
the language model frozen, and

[epoch train_loss valid_loss accuracy time

0 0.555569 0.557091 0.681592 00:20

. . 1 0.566048 0.541689 0.721393 00:21
2. fine-tune the whole architecture. >

2 0.554564 0.543157 0.736318 00:20

3 0.556879 0.526971 0.756219 00:20

Colab: http://tiny.cc/NAACLTransferFastAiColab e

5 0.541698 0.514611 0.756219 00:19

6 0.535575 0.514330 0.756219 00:19

7 0.529567 0.515582 0.746269 00:19 99

http://tiny.cc/NAACLTransferFastAiColab

5.B — Token level classification: BERT & Tensorflow

Transfer learning for token level classification: Google’s BERT in TensorFlow.

‘I
gl

1 Target task:
SQUAD: a question answering dataset.

[Inthis example we will directly use a Tensorflow checkpoint
d Example:
A We use the usual Tensorflow workflow: create model graph comprising
the core model and the added/modified elements
A Take care of variable assignments when loading the checkpoint

100

https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/google-research/bert

5.B — SQUAD with BERT & Tensorflow

Let's adapt BERT to the target task.
Keep our core model unchanged.

Replace the pre-training head
(language modeling) with a
classification head:

a linear projection layer to
estimate 2 probabilities for
each token:

— being the start of an answer
— being the end of an answer.

Start/End Span
2+

BERT

HNE

| E[SEPI

——

[cLs] T:’k .. T":k [SEP] T;’k . Tl‘;k

Question Paragraph

N

° def create model(bert config, is_training, input_ids, input mask, segment_ids,
use_one_hot_embeddings):

W 1 niw

model = modeling.BertModel (
config=bert config,
is_training=is_training,
input_ ids=input_ ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)

final hidden = model.get_ sequence_output()

final hidden_shape = modeling.get_shape_ list(final_hidden, expected_rank=3)
batch_size final hidden_shape[0]
seq_length final hidden_shape[1]
hidden_size = final hidden_shape[2]

output_weights = tf.get_variable(
"cls/squad/output_weights", hidden_size],
initializer=tf.truncated_no initializer(stddev=0.02))

output_bias = tf.get variable

"cls/squad/output_bias", initializer=tf.zeros_initializer())

final hidden matrix = tf.reshape(final_hidden,
[batch_size * seqg_length, hidden_size])

logits = tf.matmul(final hidden matrix, output weights, transpose b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq length, 2])

Llogits = tf.transpose(logits, [2, 0, 1])

unstacked_logits = tf.unstack(logits, axis=0)
(start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1l])

return (start logits, end logits)

5.B — SQUAD with BERT & Tensorflow

° def get_ assignment map_from checkpoint(tvars, init checkpoint): H
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}

Load our pretrained checkpoint initialized_variable names = {}

name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match(""(.*):\\d+$", name)
if m is not None:
name = m.group(l)
name_to_variable[name] = var

TO |Oad our CheCpr"Tt, we jUSt init_vars = tf.train.list variables(init_checkpoint)
need tO Setup an ;ssignment_map = collections.OrderedDict()

. or x in init vars:
assignement_map from the (name, var) = (x[0], x[1])

if name not in name_to_variable:

variables of the checkpoint to continue

assignment_map[name] = name

the model variable, keeping only Ll Sl =
. . initialized variable_names[name + ":0"] = 1
the variables in the model.

return (assignment map, initialized_variable_names)

° (start_logits, end logits) = create_model(E
bert_config=bert config,
is_training=is_training,

And we can use Rt
. . . . gment_ids=segment_ids,
tf.train.init_from_ckeckpoint

use_one_hot_embeddings=use_one_hot_embeddings)

tvars = tf.trainable_variables()

(assignment_map,
initialized_variable names) = get_assignment_map_from checkpoint(tvars, init_checkpoint)

tf.train.init from checkpoint(init_checkpoint, assignment_map)

102

5.B — SQUAD with BERT & Tensorflow

‘I
gl

TenSOI'F|0W-Hub ° def create_model(bert config, is_training, input_ids, input_mask, segment_ids,
useTorlxe_ht_)t_embeddixl}t';l?)i

Working dlrectly Wlth TensorFlow """Creates a classification model.

requires to have access to—and e entlpuart el

include in your code- the full iy B e

code of the pretrained model. e

use_one_hot_embeddings=use_one_hot_ embeddings)

TensorFlow Hub is a library
for sharing machine learning

models as self-contained o . .
pleces Of TensorFloW graph ° ['pip install "tensorflow_hub==0.4.0

'] j import t £low_hub as hub
with their weights and assets. mport tensorflow_hub as

final hidden = model.get sequence_output()

def create model(is_predicting, input_ids, input mask, segment *

MOdU|eS are aUtomatlcally """Creates a chl::I%Ja'.‘::t?.()); model."""
downloaded and cached when ST ——ry N
instantiated. BERT_MODEL_HUB,

trainable=True)
bert_inputs = dict(
input_ids=input_ids,

H H \ inpu k=inpu k,
Each time a module mis cglled s e
e.g. y = m(x), it adds operations s et
to the current TensorFlow graph O e)

to compute y from x.

Use "pooled output" for classification tasks on an entire sentence.
Use "sequence outputs" for token-level output.
final_hidden = bert outputs|["sequence_outputs"] 103

‘I
gl

5.B — SQUAD with BERT & Tensorflow

Tensorflow Hub host a nice selection of pretrained models for NLP

@ @& https://tfhub.dev oo w
= TensorFlow Hub Q
Text Text embedding
Embedding .
universal-sentence-encoder sy coogle
Image text-embedding DAN English
Encoder of greater-than-word length text trained on a variety of data.

Classification
Feature Vector

Generator

Other el mo By Google
text-embedding 1 Billion Word Benchmark ~ ELMo English
Embeddings from a language model trained on the 1 Billion Word Benchmark.

Video

Wikipedia and BooksCorpus ~ Transformer English
i Encoder ions from Transformers (BERT).

° bert_uncased_L-12_H-768_A-12 sy coogle

Tensorflow Hub can also used with Keras exactly how we saw in the BERT example

The main limitations of Hubs are:
[No access to the source code of the model (black-box)
O Not possible to modify the internals of the model (e.g. to add Adapters)

104

5.C — Language Generation: OpenAl GPT & PyTorch o

[
Transfer learning for language generation: OpenAl GPT and HuggingFace library.

A Target task:

ConvAl2 — The 2nd Conversational Intelligence Challenge for training and
evaluating models for non-goal-oriented dialogue systemes, i.e. chit-chat

A HuggingFace library of pretrained models

A arepository of large scale pre-trained models with BERT, GPT, GPT-2, Transformer-XL
A provide an easy way to download, instantiate and train pre-trained models in PyTorch

A HuggingFace's models are now also accessible using PyTorch Hub

105

http://convai.io

5.C — Chit-chat with OpenAl GPT & PyTorch

Knowledge Base Receive an utterance from the user
¢» Iam good thank you , how are you.
Persona
g I am an artist
o Ihave four children
> I recently got a cat
. . I enjoy walking for exercise
A dlalog generatlon taSk. I love watching Game of Thrones Dialog
9 Agent
> .
2§ OH
2 £ @ Hello ! How are you today ? '

Generate a reply
@ Great, thanks ! My children and I were just about to watch Game of Thrones.

Language generation tasks are close to the language modeling pre-training objective, but:
A Language modeling pre-training involves a single input: a sequence of words.

0
A knowledge base: persona sentences,

[history of the dialog: at least the last utterance from the user,
A tokens of the output sequence that have already been generated.

How should we adapt the model?

In a dialog setting: several type of contexts are provided to generate an output sequence:

106

5.C — Chit-chat with OpenAl GPT & PyTorch g:’

Several options: /—\

d Duplicate the model to initialize an encoder-decoder structure L —— (b) Multi-input model
e.g. Lample & Conneau, 2019 LCurrent][Dialog J Persona ‘cUrrenﬂ[oialog J{F’ersona
- - - prefix history facts prefix history facts
[Use a single model with concatenated inputs]
see e.g. Wolf et al., 2019, Khandelwal et al. 2019 | FOPTFS— —
G s Tanstomer TR (
A T L e T LT Decoder Decoder
- J
| 1 I I
Wordembeddings [T IITITITTITTT T TIT I I T IITITIITIIT1] (
Position embeddings [T T T IEEEd Linear Linear

Segment embeddings

o ot o i RGBSR BRBR 1)7

Persona History Reply
Concatenate the various context separated by delimiters and add position and segment embeddings

107
Golovanov, Kurbanov, Nikolenko, Truskovskyi, Tselousov and Wolf, ACL 2019

https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1905.08836

Let’'s import pretrained versions of OpenAl —»

° from pytorch_pretrained bert import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer :

model = OpenAIGPTLMHeadModel.from pretrained('openai-gpt')

GPT -to kenlzer and mOdel. tokenizer = OpenAIGPTTokenizer.from pretrained('openai-gpt')

° # We use 5 special tokens: <bos>, <eos>, <speakerl>, <speaker2>, <pad> 5

And add a feW neW ‘tokens to the Vocabulary —_ # to indicate start/end of the input sequence, tokens from user/bot and padding

SPECIAL_TOKENS = ["<bos>", "<eos>", "<speakerl>", "<speaker2>", "<pad>"]

Add these special tokens to the vocabulary and the embeddings of the model:
tokenizer.set_special_ tokens(SPECIAL TOKENS)

£ itertools import chai .
SOIALEELE00 8 IROLEICHA LD model.set_num_special_ tokens (len(SPECIAL_TOKENS))

Let's define our contexts and special tokens
persona_string = ["i like football", "i am from NYC"]

A sk e el T e i SR < Now most of the work is about preparing the

reply_string = "great !"

bos, eos, speakerl, speaker2 = "<bos>", "<eos>", "<speakerl>", "<speaker2>" |npUtS for the mOdel.

persona [tokenizer.tokenilze(s) for s in persona_string]
history [tokenizer.tokenize(s) for s in history_ string]

reply = tokenizer.tokenize(reply_string) We organize the contexts in segments

def build inputs(persona, history, reply):
Build our sequence by adding delimiters and concatenating
sequence [[bos] + list(chain(*persona))] + history + [reply + [eos]]

sequence = [sequence[0]] + [[speaker? if (len(sequence)-1) @ 2 else speakerl) + = 4— Add delimiter at the extremities of the segments

Build our word, segments and position inputs from the sequence
words = list(chain(*sequence)) # word tokens

segments = [speaker2 if i % 2 else speakerl # segment tokens g AN build our Word, position and Segment inputs

for i, s in enumerate(sequence) for _ in s]
position = list(range(len(words))) # position tokens
return words, segments, position, sequence for the mOdel

words, segments, position, sequence = build inputs(persona, history, reply)

Then train our model using the pretraining
Tokenize words and segments embeddings: . . N
Notcs = tokariar ciiver sokens to e uoram) language modeling objective.

segments = tokenizer.convert_ tokens_to_ids(segments)
1m_targets = ([-1] * sum(len(s) for s in sequence[:-1])) \
+ [-1] + tokenizer.convert_tokens_to_ids(sequence[-1][1:])

108

5.C — Chit-chat with OpenAl GPT & PyTorch g‘:’

PyTorch Hub

Last Friday, the PyTorch team soft-launched a beta version of PyTorch Hub. Let's have a quick look.
[PyTorch Hub is based on GitHub repositories

O A model is shared by adding a hubconf.py script to the root of a GitHub repository

[Both model definitions and pre-trained weights can be shared

[More details: https://pytorch.org/hub and https://pytorch.org/docs/stable/hub.html

In our case, to use torch.hub instead of pytorch-pretrained-bert, we can simply call torch.hub.load
with the path to pytorch-pretrained-bert GitHub repository:

° import torch

tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTLMHeadModel', 'openai-gpt')

PyTorch Hub will fetch the model from the master branch on GitHub. This means that you don't
need to package your model (pip) & users will always access the most recent version (master).

109

https://pytorch.org/hub
https://pytorch.org/docs/stable/hub.html

That’s all for this time
69

A

110
rejs Kirma

