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Please interrupt with questions / thoughts anytime!



What is scaling?

Model size
(# parameters)

Training data
(# tokens)

Training compute
(FLOPs)

Resources

Model
size

Training 
datax = Training 

compute

PaLM (2022) 540B 780B 2.5e24 6k TPU v4 for 2 months

GPT-3 (2020) 175B 300B 3.1e23 ~1,000x BERT-base

BERT-base (2018) 109M 250B 1.6e20 64 TPU v2 for 4 days
(16 V100 GPU for 33 hrs) 

𝞪 x

BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding (2018) 
Language Models are Few-Shot Learners (2020)
PaLM: Scaling Language Modeling with Pathways (2022)

🤖 📚 💻

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311


Language models improve as a power-law with model size, 
training data, and amount of compute used for training. 

How important is scaling? (Return)

Scaling laws for neural language models (2020)

Model size

🤖
Training data

📚
Compute

💻

https://arxiv.org/abs/2001.08361


How to scale? (Allocation)

Model size
(# parameters)

Training data (# tokens)

Optimal compute allocation is 
scaling model size & training 

data equally (Chinchilla).

Training compute-optimal large language models (2022)
📚

🤖

https://arxiv.org/abs/2203.15556


Predictive formula

Training compute-optimal large language models (2022)

����
We can estimate loss (L) given model size (N), training data (D), and 

learned constants:

i.e. equal scaling of N and D.

Fitting the constants, yields:

https://arxiv.org/abs/2203.15556


Scaling is data-constrained

High-quality language data
Papers: ~1T tokens
Books: ~1.6T tokens

+ Other sources (Wikipedia etc)

Code data
GitHub: ~14T tokens

Low-resource languages
Finnish 󰎿 (6M speakers): 38B tokens 
(across public and closed sources incl. libraries, social media, 
web crawls etc.)

��

Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning (2022)
chinchilla's wild implications (2022)
FinGPT: Large Generative Models for a Small Language (2023)

https://arxiv.org/abs/2211.04325
https://www.lesswrong.com/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
https://arxiv.org/abs/2311.05640
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Repeating data considered harmful for LLMs

GPT-3: “Data are sampled without replacement during training...”

PaLM: “We train all three models on exactly one epoch of the data … and 
choose the mixing proportions to avoid repeating data in any 
subcomponent.”

Is repeating 📚data really so bad?

Language Models are Few-Shot Learners (2020)
PaLM: Scaling Language Modeling with Pathways (2022)

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311


Experimental setup

Training compute
(FLOPs)

Model size
(# parameters)

Training data
(# tokens)

9.3e21 8.7B 178B

2.1e21 4.2B 84B

9.3e20 2.8B 55B

🤖 📚💻

Use common large language modeling presets:
- architecture (GPT-2 transformer)
- hyperparameters (Chinchilla)
- datasets (web crawls like C4)

+ ~300 miscellaneous runs

For each setup, train 8 models with 
different amounts of unique training 

data that is repeated 



Data 
Epochs:

Repeating data (Return)

��

Similar 
performance 

for few 
repeats



Hypothesis: 📚Data repeating as exponential decay

Intuitively, each time unique data is repeated it 
loses a fraction (𝛅) of its original value.

Radioactive decay is an 
example of exponential decay:

1

1 * 0.5

1 * 0.5 * 0.5

➤ 𝛅 = 0.5



Sum up the value at each 📚data repeat

● If 𝛅 = 1: repeated data is worth nothing (only first U counts)
● If 𝛅 = 0: repeated data is as good as new data
● If 𝛅 = 0.5: repeated data retains 50% of its prior value at each repeat

Approximation:

● If R*
D = 0: repeated data is worth nothing

● If R*
D = infinity: repeated data is as good as new data

R*
D= learned parameter, number of times you can repeat before sharply diminishing returns

D’ = value of total data, U = unique data, RD = number of repetitions



Predicting loss (Return)

Repeating for 4 
epochs is almost as 
good as new data

Sharply diminishing 
returns around R*

D  



Estimate loss given parameters and repeated data

Fit on data from ~200 training runs to learn R*
D  and R*

N 

����

R*
D = 15.4 (𝛅 ≈ 0.06)

R*
N = 5.3  (𝛅 ≈ 0.19)



Reminder: Equal scaling when not repeating data

Model size
(# parameters)

Training data (# tokens)

Training compute-optimal large language models (2022)
📚

🤖

https://arxiv.org/abs/2203.15556


How to scale when repeating? (Allocation)

Scale data faster 
than parameters 
when repeating

As our fit yields 
R*

D> R*
N, 

parameters lose 
value faster

Hypothetical 
equal scaling 
(Chinchilla)

Training on 100M tokens of unique data with varying model size and data repetitions
🤖📚



Testing our predictions at scale (Allocation)

Scaling 
parameters and 

data equally

Scaling data faster 
than parameters 

according to our fit

🤖

📚



Testing our predictions at scale - Downstream (Allocation)

Task Chinchilla: 
8.7B parameters & 

7 epochs 

Data-Constrained: 
6.3B parameters & 

10 epochs

XSum* 3.0 3.8

…16 other NLP tasks…

HellaSwag* 37.5 38.1

Average 23.5 25.9

StoryCloze* 66.8 68.4

*Average across 0-5 fewshots & rescaled



Complementary strategies to solve 📚data constraints
Thus far:

Other strategies:

Repeating

Filling with code

Revise filtering



Complementary strategies to solve 📚data constraints

Deduplicating 
clean datasets 
(C4) may not 

help

Filling with 
~60% code is as 
good as natural 
language data 

(on natural 
language tasks)

97 models 
trained for 2.1e21 

FLOPs each

💻



Takeaway #1

Repeating LLM data ~4x is fine.



Takeaway #2

50% code data is fine.



Takeaway #3

Quality-filtering + repeating 
can be a good strategy



Scaling Data-Constrained Language Models - Impact
FinGPT: 
Large 
Generative 
Models for 
a Small 
Language

38B unique 
tokens

8 epochs 
of data

Total Tokens

Va
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SILO Language Models

?
?



Thanks!
   Twitter: @Muennighoff
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Appendix



Scaling is data-constrained ��



Dataset Setup



Repeating data on OSCAR (Return)



Case Study: Galactica



Perplexity filtering



Approximations

(Geometric Series)

Let & 


