#!/usr/bin/python ################################################################################# ## The Toolkit for Advanced Discriminative Modeling ## Copyright (C) 2001-2005 Robert Malouf ## ## This library is free software; you can redistribute it and#or ## modify it under the terms of the GNU Lesser General Public ## License as published by the Free Software Foundation; either ## version 2.1 of the License, or (at your option) any later version. ## ## This library is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## Lesser General Public License for more details. ## ## You should have received a copy of the GNU Lesser General Public ## License along with this library; if not, write to the Free Software ## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ################################################################################# """Example of using TADM to build MaxEnt classifiers.""" __author__ = "Rob Malouf " __date__ = "13 October 2002" __version__ = "$Revision: 1.1.1.1 $" import psyco psyco.full() from psyco.classes import * import sys import os import getopt from maxent import * train = RainbowSource('text.train',binary=True) test = RainbowSource('text.test',binary=True) log = open('experiment.out','w') var = 0.001 for i in xrange(1,10,1): var = var * 10.0 me = MaxEntInducer().train(train,var=var) acc = AccuracySink() me.apply(test,acc) print '****' print var, acc.score()*100.0 print >> log, var, acc.score()*100.0